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ABSTRACT 

 

The verbal definition of the sample median sounds a bit strange in the early Statistics courses in the context of being non-

mathematical or non-functional. It is also interesting that estimators based on an analytical calculation such as the sample mean 

are equally strange, but not seen as strange by the students as the median estimator. In this study, we have expanded the studies 

on teaching the sample median with its optimization definitions. We have also shown that such definitions provide a natural way 

of understanding the sample median in multivariate case and regression analysis. Seeing that statistical estimators, from the 

simplest to the most complex, are obtained as a solution to an optimization problem can pave the way for other types of insights. 
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1. Introduction 

Teaching median is easy but it is quite difficult to have a comprehensive 
understanding without using the terms absolute value, differentiability, and 
optimization tools. In the univariate case, the sample median is the observation in the 
middle of the ordered data when the number of observations is odd. It is the average 
of the two values in the middle of the ordered observations if the number of 
observations is even. On the other hand, because the arithmetic mean has an 
algebraic definition, these two descriptive tools are considered to have very different 
concepts. On the contrary, these two estimators consist of solving similar 
optimization problems [2, 5].  

Besides the sample median and mean, many statistical estimators have optimization 
based definitions: the sample mod maximizes the frequency, ordinary least squares 
estimator minimizes the sum of squared residuals, explicit optimizers such as 
Maximum-Likelihood estimators always maximize an objective function, K-means 
minimizes within-group variances and maximizes between-group variance, etc. 
Explaining the basic statistical estimators with their optimization definitions 
facilitates the transition to extensions and multi-dimensional versions of these 
estimators in a uniform way. 

In Section 2, the optimization based definitions of sample mean and median are 
introduced. Since the absolute value function is not differentiable in all real points, 
computational performance of a smooth version is compared with the absolute value 
function. In Section 3, it is shown that how the optimization-based approach can 
easily be generalized to multivariate case. In Section 4, a median based robust 
regression estimator, LMS, is expressed in terms of absolute value and optimization. 
In Section 5, it is shown that the LAD estimator shares the similar solution technique 
with the sample median in univariate case. Finally, in Section 6, we conclude.  

2. The univariate case 

Suppose 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of 𝑛 observed values. The sample mean 𝑥̅ 
minimizes 

𝐿 =  ∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

. 

Since 𝐿 is in quadratic form, the existence of a global minimum is always guaranteed. 
It can be proved by taking the derivative, equating it to zero, and solving the equation 

 

𝑑𝐿

𝑑𝑥̅
=  ∑ −2(𝑥𝑖 − 𝑥̅) = 0

𝑛

𝑖=1

 

yields  

𝑥̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 . 
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Since 𝐿 is proportional to sample variance, the sample mean also minimizes the 
sample variance, by definition.  

The sample median, 𝑏, is generally presented as an order statistic, that is, it is the 
value at the middle of the ordered observations in univariate case. In other terms, it 
is expected that the half of the observations are less than the sample median 
whereas the remaining ones are greater than the sample median. That implies that  

𝐿𝑏 = ∑|𝑥𝑖 − 𝑏|

𝑛

𝑖=1

 (1) 

is minimized where | . | is the absolute value function. 𝐿𝑏 is a continuous function in ℝ 
whereas its first derivative 

𝑑|𝑥|

𝑑𝑥
=

𝑥

|𝑥|
 

is not defined for 𝑥 = 0.  The derivative can also be expressed as a truncated signum 
function 

𝑑|𝑥|

𝑑𝑥
= {

−1 , 𝑥 < 0
1 , 𝑥 > 0

 

where 𝑥 ≠ 0. The absence of derivative for 𝑥 = 0 does indeed pose a real trouble when 
the number of observations is odd as at least one observation is equal to sample 
median in this case.  

Smoothing the absolute value function can be used to solve this problem. Replacing 
the absolute value by 

√𝑥2 

yields exactly the same results with the absolute value function, however, the 
derivative  

𝑑√𝑥2

𝑑𝑥
=

1

2√𝑥2
 

 is not defined for 𝑥 = 0. Another approximation  

𝜆(𝑥) =
𝑥𝑒𝑘𝑥 − 𝑥𝑒−𝑘𝑥

𝑒𝑘𝑥 + 𝑒−𝑘𝑥
 

fits well with the absolute value for large values of 𝑘 [6]. The first derivate of 𝜆(𝑥) is 

𝑑𝜆(𝑥)

𝑑𝑥
=

4𝑘𝑥𝑒2𝑘𝑥 + 𝑒4𝑘𝑥 − 1

(𝑒2𝑘𝑥 + 1)2
 

and it is defined for 𝑥 ∈  ℝ. Since the function and its first derivative is continuous, 
any gradient based optimization method can be used to find a solution for 𝐿𝑏, such 
as gradient descent, possibly with hand calculations. Assume that 𝑏0 is the initial 
solution for 𝐿𝑏. Then, 

𝑏1 = 𝑏0 − 𝛼
𝑑𝜆

𝑑𝑥
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is the next step estimate of sample median. After iterating many steps, it is expected 
𝑏𝑡 to converge to sample median, where 𝑡 is the number of iterations. 

Interestingly, the sample median 𝑏 defined in Equation (1) can also be expressed as 
the solution of a goal programming problem, a special member of linear 
programming. Suppose 𝑢1

− > 0  if 𝑥1 − 𝑏 < 0 and 𝑢1
+ > 0 if  𝑥1 − 𝑏 > 0. When 𝑢1

− =

𝑢1
+ = 0, 𝑥1 = 𝑏. By these definitions, negative and positive deviations from the median 

𝑏 are expressed using non-negative terms. Minimizing sum of the deviations yields 
the objective function  

min 𝑧 = 𝑢1
− + 𝑢1

+ + 𝑢2
− + 𝑢2

+ + ⋯ + 𝑢𝑛
− + 𝑢𝑛

+ 

subject to the constraints  

     𝑥1 − 𝑏 +𝑢1
− − 𝑢1

+ = 0 

     𝑥2 − 𝑏 +𝑢2
− − 𝑢2

+ = 0 

⋮ 

     𝑥𝑛 − 𝑏 +𝑢𝑛
− − 𝑢𝑛

+ = 0 

where 

𝑢1
−, 𝑢1

+, 𝑢2
−, 𝑢2

+, … , 𝑢𝑛
−, 𝑢𝑛

+ ≥ 0 

𝑏 ∈ ℝ. 

Expressing negative and positive deviations from the sample median replaces the 
absolute value function. The latest form of the problem is a standard linear 
programming problem with 𝑛 constraints and 2𝑛 + 1 decision variables. Since 𝑏 is 
unbounded, it can be expressed as a difference of two non-negative variables, e.g., 
𝑏 = 𝑏+ − 𝑏−. Since the sample median is a location parameter estimator, it is clear 
that it lies within the range [min(𝑥) , max (𝑥)], so additional constraints can be added 
to the problem if calculation of the range is not expensive. 

The linear programming problem is efficient and has a unique solution when 𝑛 is odd. 
When the number of observations 𝑛 is even, then the problem has two alternative 
optimum solutions, say that, 𝑏1

∗ and 𝑏2
∗ are the members of two set of optimal 

solutions. Taking the average 

0.5𝑏1
∗ + 0.5𝑏2

∗ = 𝑏∗ 

yields the sample median. 

2.1. Code Snippets 

In this section, median of a sample is estimated using the Formula (1) with the 
absolute value function itself and its approximation. Table 1 shows the compared 
functions and their derivatives for the estimation of the sample median. In Figure 1, 
R [3] implementation of the functions and their derivatives are shown. The code 
shown in Figure 2 performs two different optimizations for the median of the data 
labeled as mydata which has a median of  9. Figure 3 summarizes the results. 
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Optimization Objective Function Derivative Optimizer 

o1 𝜆(𝑥) 
𝑑𝜆

𝑑𝑥
 BFGS 

o2 Absolute Value Signum BFGS 
Table 1. Optimization configuration for univariate sample median 
 

 
Figure 1. Code Snippet 1 
 

 
Figure 2. Code Snippet 2 
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Figure 3. R code outputs 
 

 

In Figure 3, it is shown that the sample median can be estimated using a derivative 
based optimizer such as BFGS in R’s optim() function. It is also shown that the 
smoothed version of absolute value function and its derivative require less function 
evaluations, however, the optimum solution reached is a little far from the real 
solution. The absolute value and signum based derivative require more function 
evaluations but reaches the optimum in a great precision. Note that the process of 
ordering 16 observations requires 𝑛log(𝑛) in average and it is 16Log(16) ≈ 44 for this 
example. The gradient based approach is more efficient than the classical median() 
function when the number of observations are moderate and big. Interestingly, the 
examined estimation procedures are based on derivatives to compute sample median 
which is not differentiable by definition. 

 

3. The multivariate case 

Suppose 𝑥 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) is a collection of observations where 𝒙𝒊 ∈  ℝ𝑝, 𝑝 is the 
dimensionality, and, 𝑛 is the number of observations. The multivariate median is the 
center of the dataset, however, the concept “center” is not well-defined. Various 
multivariate median estimators are developed in the literature including the Spatial 
(Geometric) median [1], Oja median [9], Tukey median [10], coordinate-wise median, 
etc. The simplest definition is the coordinate-wise median which is based on 
constructing a vector of medians of each single dimension, independently.  However, 
the vector of marginal medians does not necessarily equal to the center of data.  

Geometrically, in univariate case, the sample median leaves half the data to the left 
and right. When 𝑝 ≥ 2, there are infinite number of directions and there is not a 
unique ordering of observations. That is why the sample median could not be 
estimated using a single pass algorithm as in the univariate case.  

Let 𝒎 is a 𝑝-dimensional vector of coordinates. The objective function 𝐿𝑏 defined in 
Equation (1) can be re-written for 𝑝-dimensional case as 

min 𝐿𝑚 = ∑ 𝑑(𝒙𝒊 − 𝒎)

𝑛

𝑖=1

 (2)  
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without loss of generality, where 𝑑 is a distance function. By this definition, the 
multivariate sample median 𝒎 is a new point which minimizes the total distance to 
all of the observations. When the distance function is chosen as the Euclidean 
function,  the distance of a single observation is the length of the shortest line 
between the observation 𝒙𝒊 and 𝒎. This concept shares the same idea of minimizing 
the total of distances to sample median in univariate case as given in Equation (1) [1].  

In Figure 4, a set of 2-d points on a circle with radius 𝑟 = 40 is shown. Since the center 
of this circle is (0,0), then the formula of all points in this circle is 

𝑥2 + 𝑦2 = 402 

and the total distance of the points to the median is 

∑ √(𝑥𝑖 − 𝑚1)2 + (𝑦𝑖 − 𝑚2)2

𝑛

𝑖=1

 

where 𝑚1 and 𝑚2 are elements of median vector, respectively. (𝑚1, 𝑚2) = (0,0) 
minimizes the total distances because any other points distant from the origin yields 
higher objective function values.      

 
Figure 4. Observations on a circle 

Similarly, assuming the number of points is infinite, the squared form of the objective 
function 

∑(𝑥𝑖 − 𝑚1)2 + (𝑦𝑖 − 𝑚2)2

𝑛

𝑖=1

 

has a minimum at (𝑚1, 𝑚2) = (0,0) = (
∑ 𝑥𝑖

𝑛
,

∑ 𝑦𝑖

𝑛
),  which is equal to the sample median, 

but this time, the result is the sample mean just because the data is perfectly 
symmetric and the objective function is in squared form. 

4. Least median of squares regression 
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Suppose the regression model is  

𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖 

where 𝑦 and 𝑥 are the vectors of dependent and independent variables, respectively, 
𝛽0 and 𝛽1 are unknown regression parameters to estimate, 𝜖 is the stochastic error-
term with zero mean and constant variance. We have generally 𝑛 ≥ 𝑝 in regression 
problems so there is not a unique solution at hand. However, the ordinary least 
squares (OLS) estimators 𝛽̂0 and 𝛽̂1 minimizes  

𝐿𝑂𝐿𝑆 = ∑(𝑦𝑖 − 𝛽̂0 − 𝛽̂1𝑥𝑖)
2

𝑛

𝑖=1

 

so as in the way where 𝑥̅ minimizes the univariate sample variance. In other terms, 
the regression estimator minimizes  

𝐿𝑂𝐿𝑆 = ∑ 𝑒𝑖
2

𝑛

𝑖=1

 

where 𝑒𝑖 = 𝑦𝑖 − 𝛽̂0 − 𝛽̂1𝑥𝑖  and 𝜎̂2 =
𝐿𝑂𝐿𝑆

𝑛−𝑝
 , which is proportional to objective function. In 

short, both the sample mean and OLS estimators estimate the location parameter(s) 
by minimizing the variance.  

The Least Median of Squares (LMS) estimator has a different loss function compared 
with OLS in which the summation operator is replaced by median [4]. 𝐿𝐿𝑀𝑆 is defined 
as 

𝐿𝐿𝑀𝑆 = Median 𝑒𝑖
2 

and the LMS regression estimator 𝛼̂0 and 𝛼̂1 solve the problem of 

min
𝑎̂0,𝛼̂1

Median (𝑦𝑖 − 𝛼̂0 − 𝛼̂1𝑥𝑖)2. 

Replacing the median function with its absolute value definition we yield 

min
𝑎̂0,𝛼̂1,𝑏

∑|(𝑦𝑖 − 𝛼̂0 − 𝛼̂1𝑥𝑖)
2 − 𝑏|

𝑛

𝑖=1

 

where 𝑏 is the median of regression residuals.  Note that the parameter estimator 𝑏 
is not a constant but a function of residuals, i.e, 𝑏 = 𝑓(𝑦𝑖 − 𝛼̂0 − 𝛼̂1𝑥𝑖). 

5. Least absolute deviations regression  

Since the objective function of the LMS regression includes quadratic terms and it is 
non-linear, the estimation requires additional computational effort.  Similarly, 
another robust regression estimator, LAD (Least Absolute Deviations) [7], minimizes 
the linear but non-differentiable objective function 

𝐿𝐿𝐴𝐷 = ∑|𝑒𝑖|

𝑛

𝑖=1

= ∑|𝑦𝑖 − 𝛽̂0 − 𝛽̂1𝑥𝑖|

𝑛

𝑖=1

 

and can be solved using many iterative optimizers, however, expressing the residuals 
using non-negative terms opens new rooms for effectively obtained solutions. Let 
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𝑒1
− > 0 if the first residual is under the regression line, whereas, 𝑒1

+ > 0 if the first 
residual is over the regression line. If 𝑒1

− = 𝑒1
+ = 0 then the regression line exactly fits 

the first observation. Minimizing sum of the all deviations from the regression line 
implies 

min 𝑧 = 𝑒1
− + 𝑒1

+ + 𝑒2
− + 𝑒2

+ + ⋯ + 𝑒𝑛
− + 𝑒𝑛

+ 

under the constraints  

     𝑦1 − 𝛽̂0 − 𝛽̂1𝑥1 +𝑒1
− − 𝑒1

+ = 0 

     𝑦2 − 𝛽̂0 − 𝛽̂1𝑥2 +𝑒2
− − 𝑒2

+ = 0 

⋮ 

     𝑦𝑛 − 𝛽̂0 − 𝛽̂1𝑥𝑛 +𝑒𝑛
− − 𝑒𝑛

+ = 0 

where 

𝑒1
−, 𝑒1

+, 𝑒2
−, 𝑒2

+, … , 𝑒𝑛
−, 𝑒𝑛

+ ≥ 0 

𝛽̂0, 𝛽̂1 ∈ ℝ. 

The linear problem has a unique solution, efficient, and easy to express. Replacing the 
absolute value function with non-negative deviations transforms the objective 
function and the constraints into linear and differentiable equations [8].   

Conclusion 

The sample median definition based on optimizations is similar to the definition of 
the sample mean and can help to better understand these two concepts. This 
approach can also be directly applied to estimators developed for the multivariate 
data. In addition to using this approach as a teaching tool, gradient-based approaches 
can be more efficient than order-based methods when the number of observations is 
large. Interestingly, the sample median can also be expressed as a linear 
programming problem and can be efficiently solved. Some median-based robust 
regression estimators can also be expressed using this approach, however, random 
search algorithms can be more efficient as the optimization-based approach is 
getting increasingly complex. Another robust regression estimator, LAD, shares the 
same idea of estimating the sample median in univariate case by optimizations and 
can be efficiently solved. Thinking the basic and the complex statistical estimators as 
solutions of similar optimization problems can improve understanding of basic 
concepts. This work does not infer any statistical results for effectiveness of the 
teaching approach, but presents a consistent point of view, however, a possible 
future work can study the impacts of different approaches. 
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