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Abstract

In this paper, we investigate generalized variational comparison results aimed to study the stability properties in terms of two measures for
solutions of Set Differential Equations (SDEs) involving causal operators, taking into consideration the difference in initial conditions. Next,
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1. Introduction

Many researchers were interested in studying set differential equations (SDEs) in the recent decades [1, 2, 6, 7, 8, 9, 11, 15, 18, 22, 31, 35, 47]
due to their unifying properties. Lakshmikantham et al. highlighted these properties in one of the most important resources on this topic [15].
The comprehensiveness of the SDEs is driven from the fact that they encompass the conventional differential and integral equations when
the Hukuhara difference and integrals defined on the SDEs are restricted to R; whereas they give us vector differential equations when the
restriction is done to Rn [3, 17, 20]. On the other hand, many well-known differential equations such as integro differential equations [25],
impulsive differential equations [14], and differential equations with delay [34], are examples of differential equations involving causal
operators. Many research papers dealt with those types of equations [5, 6, 7, 8, 9, 19, 37, 43].

SDEs with causal operators unifies the fundamental theory of SDEs, including various corresponding dynamical systems. Some relevant
works can be found in [6, 7, 8, 9, 10, 11, 30, 31, 47].

Although it is never feasible to know the exact solutions of all dynamical systems in practice, their attributes may be determined through a
variety of qualitative studies such as stability analysis [1, 2, 3, 12, 18, 20, 24, 31, 35], initial time difference (ITD) stability analysis [4, 26,
27, 32, 33, 36, 39, 40, 41, 43, 44, 45, 46, 47], practical stability analysis [21, 28, 42, 46], boundedness [1, 4, 10, 13, 29, 36, 39, 40, 41, 42], etc.

Many techniques have been used in this process, including the Lyapunov second method [20, 24, 32, 43, 44], variation of parameters
[16, 29, 32], ”in terms of two measures” methodology [22, 23, 29, 31, 36, 40, 45, 46], and so on.

In this manuscript we study the practical stability in terms of two measures with ITD for SDEs involving causal operators.

2. Preliminaries

In what follows, we denote the set of all compact non-empty subsets of Rn by K (Rn), and the set of all compact and convex non-empty
subsets of Rn by Kc (Rn).
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The Hausdorff metric between any bounded sets A and B in Rn is defined as

D(A,B)=max

[
sup
x∈B

d (x,A) , sup
y∈A

d (y,B)

]
(2.1)

where

d (x,A)=inf {d (x,y) : y∈A} (2.2)

Each of (K (Rn) ,D) and (Kc (Rn) ,D) forms a complete metric space. The space Kc (Rn) equipped with the natural addition and non-negative
scalar multiplication becomes a semi-linear metric space which can be embedded as a cone into a corresponding Banach space.

The Hausdorff metric satisfies the following properties:

(1) D(A,B) = D(B,A)

(2) D(A+C,B+C) = D(A,B)

(3) D(kA, kB) = k D(A,B)

(4) D(A,B)≤ D(A,C)+D(C,B)

(2.3)

for any A,B,C∈Kc (Rn) and k∈R+, where Minkowski addition of any two non-empty subsets A and B of Rn is defined by
A+B={a+b : a∈A, b∈B} and where scalar multiplication of a value k∈R and a non-empty subset A of Rn is defined by kA={ka :a∈A}.
If k=−1, we get −A=(−1)A={−a :a∈A}.

In general, A+(−A) 6={0} (unless A={a} is a singleton). To overcome with this implication of Minkowski difference, i.e.

A−B = A+(−1)B = {a−b : a ∈ A, b ∈ B} (2.4)

Hukuhara difference between two sets A,B∈Kc (Rn) is defined as follows:

If there exists a set C∈Kc (Rn) such that C+B=A, then Hukuhara difference exists and we denote it by A�B, or simply A−B when there is
no confusion with Minkowski difference. i.e. A�B=C⇔C+B=A.

An important property of Hukuhara difference is A−A={0} for A∈Kc (Rn) .

Let U :I→Kc (Rn) be a given multifunction, where I is an interval of real numbers.U is said to be Hukuhara differentiable at a point t0∈I, if
there exists an element DHU (t0)∈Kc (Rn) such that the limits

lim
h→0+

U (t0 +h)−U (t0)
h

and lim
h→0+

U (t0)−U (t0−h)
h

(2.5)

both exist in the topology of Kc (Rn) and are equal to DHU (t0) .

It is implicit in the definition of DHU (t0) the exitance of the two differences U (t0+h)−U (t0) and U (t0)−U (t0−h) , for sufficiently small
h> 0.

By embedding Kc (Rn) as a complete cone in a corresponding Banach space and taking into account the result on differentiation of Bochner
integral, we find that if

G(t) = G(t0)+
∫ t

t0
F (s)ds, t ∈ I (2.6)

where F :I→ Kc (Rn) is integrable in the sense of Bochner, then G is Hukuhara differentiable, i. e. DHG(t) exits, and the equality
DHG(t)=F (t), a. e. on I, holds.

Also, the Hukuhara integral∫
I

F (s)ds =
[∫

I
f (s)ds : f is a continuous selector o f F

]
(2.7)

for any compact set I⊂R+.

Let E=C [[t0,∞) , Kc (Rn)] with norm

sup
t∈[t0,∞)

D [U (t) ,θ ]
h(t)

< ∞ (2.8)

where U∈E, θ is the zero element of Rn, which is regarded as a point set; and h : [t0,∞)→R+ is a continuous map. E equipped with such a
norm is a Banach space.
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Let Q∈C [E,E] . Q is said to be a causal map if U (s)=V (s) , t0≤s≤t<∞, and U,V∈E then

(QU)(s) = (QV )(s) , t0 ≤ s≤ t < ∞. (2.9)

Let us consider the following differential equations

DHU = (QU)(t) , U (t0) =U0 f or U0 ∈ Kc (Rn) and t ≥ t0 ≥ 0, (2.10)

DHU = (QU)(t) , U (τ0) =V0 f or V0 ∈ Kc (Rn) and t ≥ τ0 ≥ 0 (2.11)

DHV = (PV )(t) , V (τ0) =V0 f or V0 ∈ Kc (Rn) and t ≥ τ0 (2.12)

DHW = (SW )(t) , W (τ0) =V0−U0 f or W (τ0) =W0 ∈ Kc (Rn) and t ≥ τ0 (2.13)

where Q,P,S :E→E are causal operators, and satisfy a local Lipschitz condition on R+×Sρ where Sρ=
{

U∈Kc (Rn) :D
[
U, 0̃

]
<ρ<∞

}
.

It is clear that (2.10) and (2.11) are different in the initial time and position. Moreover, if (PV )(t) in (2.12) is written as (PV )(t) =
(QV )(t)+(RV )(t); Then, we consider (2.12) as the perturbed form corresponding to the unperturbed equation (2.11) with the perturbation
term (RV )(t).

Assuming that
(
Q0̃
)
(t)≡0̃ for t≥0, and assuming the necessary smoothness of P,Q and R to guarantee the existence and uniqueness of the

solution U (t)=U (t, t0,U0) of (2.10) through (t0,U0) for all t≥t0, and those of the solution V (t)=V (t,τ0, V0) of (2.12) through (τ0,V0) for
all t≥τ0, in addition to their continuous dependence on the initial conditions.

If U ∈ C1 [ J1,Kc (Rn)] on J1 = [t0, t0 +T1] , then it is said to be a solution of (2.10) on J1 if it satisfies (2.10) on J1. If U,V and W ∈
C1 [ J2,Kc (Rn)] on J2 = [t0, t0 +T2] , then these are said to be solutions of (2.11), (2.12), (2.13) on J2 provided that they satisfy (2.11), (2.12),
(2.13) on J2, respectively.

Now let us define a partial order in the metric space (Kc (Rn) , D). First, we start by defining a cone in Kc (Rn).

Definition 2.1. The subfamily K ⊂ Kc (Rn) is said to be a cone in Kc (Rn) if it consists of sets U ∈ Kc (Rn) such that any u ∈U is a
non-negative n-component vector u = (u1,u2, . . . ,un) satisfying ui ≥ 0 for i = 1 . . .n. The subfamily K0 ⊂ Kc (Rn), that consists of sets
U ∈ Kc (Rn) such that any u ∈U is a positive n-component vector u = (u1,u2, . . . ,un) satisfying ui > 0 for i = 1 . . .n, is the nonempty
interior of the cone K.

Definition 2.2. For any U, V ∈ Kc (Rn) , if there exists Z ∈ Kc (Rn) such that Z ∈ K and U = V +Z then we say that U ≥ V or V ≤U.
Similarly, if there exists Z ∈ Kc (Rn) such that Z ∈ K0 and U =V +Z then we say that U >V or V <U.

We present below some needed classes to develop the stability results in terms of two measures.

K= {a ∈C [R+,R+] : a(u) is strictly increasing in u and a(0) = 0} (2.14)

L=
{

σ ∈C [R+,R+] : σ (u) is strictly decreasing in u and lim
u→∞

σ (u) = 0
}

(2.15)

CK=

{
a ∈C

[
R2
+,R+

]
: a(t,s) ∈K f or each t

and a(t,s) is continuous f or each s

}
(2.16)

Γ =

{
h ∈C [R+×Kc (Rn) ,R+] : inf

(t,U)
h(t,U) = 0

}
(2.17)

Γ0 =

{
h ∈ Γ : inf

U
h(t,U) = 0 , f or each t ∈ R+

}
(2.18)

Next, to introduce a Lyapunov-like function, we present some required definitions when dealing with the concept of ”two measures”.
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Definition 2.3. Let L ∈C [R+×Kc (Rn) ,R+] , then L is said to be
(i) h-positive definite if there exists a ρ > 0 and a b ∈K such that

h(t,U)< ρ implies b(h(t,U))≤ L(t,U) (2.19)

(ii) h-decrescent if there exists a ρ > 0 and a function a ∈K such that

h(t,U)< ρ implies L(t,U)≤ a(h(t,U)) (2.20)

(iii) h-weakly decrescent if there exists a ρ > 0 and a function a ∈ CK such that

h(t,U)< ρ implies L(t,U)≤ a(t, h(t,U)) (2.21)

Definition 2.4. Let h0,h ∈ Γ, then we say that h0 is finer than h if there exists a ρ > 0 and a function φ ∈ CK such that

h0 (t,U)≤ ρ implies h(t,U)≤ φ (t,h0 (t,U)) (2.22)

h0 is uniformly finer than h if the function φ in the above definition is independent of t.

Now, let us introduce the definitions of generalized Dini-like derivatives of L.

Definition 2.5. We define the generalized derivative (Dini-like derivatives) for a real-valued function
L∈C [R+×Kc (Rn) ,R+] as follows:

D+
∗ L(t,s,U) = lim

h→0+
sup

1
h

[
L
(
s+h,V

(
t,s+h,U +h

(
Q̃Ũ
)
(s)
))
−L(s,V (t,s,U))

]
(2.23)

D∗−L(t,s,U) = lim
h→0−

in f
1
h

[
L
(
s+h,V

(
t,s+h,U +h

(
Q̃Ũ
)
(s)
))
−L(s,V (t,s,U))

]
(2.24)

for t,s∈R+ and U∈Kc (Rn) .

Next, let us introduce the definitions of initial time difference (ITD) practically stability in terms of two measures, before proceeding with
the stability results.

Definition 2.6. Let U (t, t0,U0) be any solution of (2.10) for t ≥ t0 ≥ 0, and let Ũ (t,τ0,U0) =U (t−η , t0,U0), for η = τ0− t0. The solution
V (t,τ0,V0) of (2.12) for t ≥ τ0 is said to be

(i) ITD (h0,h)-practically stable with respect to the solution Ũ if and only if given any (λ ,A) with 0 < λ < A and for some τ0 ∈ R+ such
that h0 (τ0,V0−U0)≤ λ implies

h(t,V (t,τ0,V0)−U (t−η , t0,U0))≤ A, t ≥ τ0 (2.25)

(ii) ITD (h0,h)-uniformly practically stable with respect to the solution Ũ if the previous implication in (i) holds for every τ0 ∈ R+.

(iii) ITD (h0,h)-practically quasi-stable with respect to the solution Ũ , if and only if given any (λ ,B,T )> 0 with 0 < λ < B and for some
τ0 ∈ R+ such that h0 (τ0,V0−U0)≤ λ implies

h(t,V (t,τ0,V0)−U (t−η , t0,U0))≤ B, t ≥ τ0 +T (2.26)

(iv) ITD (h0,h)-uniformly practically quasi-stable with respect to the solution Ũ if the previous implication in (iii) holds for every τ0 ∈ R+.

3. ITD Stability Results in Terms of Two Measures

3.1. ITD Variational Comparison Results

In what follows, let us present generalized variational comparison results aimed to study the stability properties in terms of two measures for
solutions of SDEs involving causal operators, taking into consideration the difference in the initial conditions.

Theorem 3.1. Assume that

(i) Both L(t,Ω)∈C
[
R+×Kc (Rn) ,RN

+

]
and ‖W (t,s,Ω)‖ satisfy a local Lipschitz condition in Ω for any t,s; where W (t)=W (t,τ0,V0−U0)

is the solution of (2.13) for t ≥ τ0, Ũ (t,τ0,U0) = U (t−η , t0,U0), for η = τ0− t0, U (t, t0,U0) is any solution of (2.10) for t ≥ t0, and
V (t) =V (t,τ0,V0) is the solution of (2.12) for t ≥ τ0; and let Ω(t)=V (t)−Ũ (t).

(ii)

D∗−L(t,s,Ω)≤ g(t,s,L(s,W (t,s,Ω))) (3.1)

where

D∗−L(t,s,Ω) = lim
δ→0−

inf
1
δ

(
L
(
s+δ ,W

(
t,s+δ ,Ω+δ

(
(PV )(s)−

(
Q̃Ũ
)
(s)
)))
−L(s,W (t,s,Ω))

)
(3.2)
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(iii) g ∈ C
[
R+×RN

+,RN] , g(t,s,u) is quasi-monotone non-decreasing in u for any t,s; that is, if u ≤ v, ui = vi for some i such that
1≤ i≤ N, then gi (t,s,u)≤ gi (t,s,v) , for t,s ∈ R+ (In this context, the inequality symbol used in the vectorial inequalities is understood to
denote component-wise inequality [38]);

and r (t,s,τ0,V0) is the maximal solution of

du(s)
ds

= g(t,s,u(s)) , u(τ0) = u0 ≥ 0 (3.3)

existing for τ0 ≤ s≤ t < ∞.

Then, L(τ0,W (t,τ0,V0−U0)) = u0 implies

L(t,Ω(t,τ0,V0−U0))≤ r0 (t,τ0,L(τ0,W (t,τ0,V0−U0))) (3.4)

where r0 (t,τ0,u0) = r (t, t,τ0,u0) .

Proof. Let us set

m(t,s) = L(s,W (t,s,Ω(s))) f or τ0 ≤ s≤ t (3.5)

Then, we have

m(t,τ0) = L(τ0,W (t,τ0,Ω(τ0))) = L
(
τ0,W

(
t,τ0,V (τ0)−Ũ (τ0)

))
= L(τ0,W (t,τ0,V0−U0)) = u0 (3.6)

For a sufficiently small positive value δ , we have

m(t,s+δ )−m(t,s)

= L(s+δ ,W (t,s+δ ,Ω(s+δ )))−L(s,W (t,s,Ω(s)))

= L(s+δ ,W (t,s,Ω(s))+δ (SW (t,s,Ω(s)))(s)+ ε (δ ))−L(s,W (t,s,Ω(s)))

(3.7)

where ε stands for error and limδ→0−
ε(δ )

δ
= 0.

Taking into consideration the assumptions in (i) regarding the locally Lipschitz property of L(t,Ω) and ‖W (t,s,Ω)‖ in Ω, it is seen that

m(t,s+δ )−m(t,s)≤ k (ε1 (δ )− ε2 (δ ))+L
(
s+δ ,W

(
t,s,V (s)−Ũ (s)

)
+δ

(
(PV )(s)−

(
Q̃Ũ
)
(s)
))

−L
(
s,W

(
t,s,V (s)−Ũ (s)

)) (3.8)

where ε1,ε2 stand for errors, k stands for Lipschitz constant.

The inequality in the assumption (ii) gives us the following estimation regarding the Dini derivative of m(t,s)

D∗−m(t,s)

≤ lim
δ→0−

inf
1
δ

K (ε1 (δ )− ε2 (δ )) + lim
δ→0−

inf
1
δ

L
(
s+δ ,W

(
t,s,V (s)−Ũ (s)

)
+δ

(
(PV )(s)−

(
Q̃Ũ
)
(s)
))

− lim
δ→0−

inf
1
δ

L
(
s,W

(
t,s,V (s)−Ũ (s)

))
≤ g

(
t,s,L

(
s,W

(
t,s,V (s)−Ũ (s)

)))
= g(t,s,L(s,W (t,s,Ω(s)))) = g(t,s,m(t,s))

(3.9)

for τ0 ≤ s≤ t < ∞.

A comparison result [Theorem 1.7.1] from [17] gives us the following inequality

m(t,s)≤ r (t,s,τ0,L(τ0,W (t,τ0,V0−U0))) f or τ0 ≤ s≤ t (3.10)

Choosing s = t in the right-hand side of the previous inequality, we get

m(t,s)≤ r (t, t,τ0,L(τ0,W (t,τ0,V0−U0))) = r0 (t,τ0,L(τ0,W (t,τ0,V0−U0))) (3.11)

which yields the desired estimation in (3.4) completing the proof.

Theorem 3.2. Under the assumptions of Theorem 1 with N = 1 and g(t,s,u)≡ 0, we have

L(t,Ω(t,τ0,V0−U0))≤ L(τ0,W (t,τ0,V0−U0)) , t ≥ τ0 (3.12)

Furthermore, we assume

D∗−L(t,s,Ω)≤−c(h(s,W (t,s,Ω))) , τ0 ≤ s≤ t < ∞ (3.13)

where c ∈K= {φ ∈C [R+,R+] such that φ (0) = 0 and φ (s) is increasing in s} and h ∈C [R+×Kc (Rn) ,R+] .

Then, for t ≥ τ0

L(t,Ω(t,τ0,V0−U0))≤ L(τ0,W (t,τ0,V0−U0))−
∫ t

τ0

c(h(s,W (t,s,Ω(s))))ds (3.14)
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Proof. Starting from the statement (3.9) in the proof of Theorem 1,

D∗−m(t,s)≤ g(t,s,m(t,s)) f or τ0 ≤ s≤ t < ∞ (3.15)

Then, since g(t,s,u)≡ 0, we get by integrating the two sides of the previous inequality (3.15), for s ∈ [τ0, t] ,∫ t

τ0

D∗−m(t,s)ds = L(t,W (t, t,Ω(t)))−L(τ0,W (t,τ0,Ω(τ0)))≤ 0 (3.16)

Hence, we have

L(t,Ω(t,τ0,V0−U0))≤ L(τ0,W (t,τ0,V0−U0)) f or t ≥ τ0 (3.17)

Now, let us set

M(s,W (t,s,Ω(s)))≡ L(s,W (t,s,Ω(s)))+
∫ s

τ0

c(h(ξ ,W (t,ξ ,Ω(ξ ))))dξ (3.18)

Then, by taking Dini derivatives of both sides and by assumption (3.13), we have

D∗−M (t,s,Ω(s)) = D∗−L(t,s,Ω(s))+ c(h(s,W (t,s,Ω(s))))− c(h(τ0,W (t,τ0,Ω(τ0))))

≤ D∗−L(t,s,Ω(s))+ c(h(s,W (t,s,Ω(s))))

≤−c(h(s,W (t,s,Ω(s))))+ c(h(s,W (t,s,Ω(s)))) = 0

(3.19)

Thus, D∗−M (t,s,Ω(s))≤0, in view of (3.17), gives us for t ≥ τ0,

M (t,Ω(t,τ0,V0−U0))≤M (τ0,W (t,τ0,V0−U0)) (3.20)

By the definition of M, this implies, for t ≥ τ0,

L(t,Ω(t,τ0,V0−U0))+
∫ t

τ0

c(h(ξ ,W (t,ξ ,Ω(ξ ))))dξ

≤ L(τ0,W (t,τ0,V0−U0))+
∫

τ0

τ0

c(h(ξ ,W (t,ξ ,Ω(ξ ))))dξ

(3.21)

L(t,Ω(t,τ0,V0−U0))+
∫ t

τ0

c(h(ξ ,W (t,ξ ,Ω(ξ ))))dξ ≤ L(τ0,W (t,τ0,V0−U0)) (3.22)

Moving the integral term to the right-hand side gives us the desired estimation (3.14) and this completes the proof.

3.2. Main ITD Practical Stability Results in Terms of Two Measures

Now, let us employ the comparison results in section 3.1 to prove the following theorems giving sufficient conditions for ITD practical
stability in terms of two measures for the solutions of perturbed SDEs involving causal operators in regard to their unperturbed ones.

The following theorem gives sufficient conditions for ITD (h0,h)-practically stability of the solution V (t,τ0,V0) of (2.12) for t ≥ τ0 through
(τ0,V0) with respect to the solution Ũ (t,τ0,U0) = U (t−η , t0,U0), for η = τ0− t0, where U (t) = U (t, t0,U0) is the solution of (2.10)
through (t0,U0) for t ≥ t0.

Theorem 3.3. Assume that

(i) 0 < λ < A;

(ii) h0,h ∈ Γ and h0 is uniformly finer than h, that is, there exists a function φ ∈K such that

h0 (t,Ω)≤ λ implies h(t,Ω)≤ φ (h0 (t,Ω)) (3.23)

(iii) L(t,Ω) ∈C [R+×Kc (Rn) ,R+] satisfies a local Lipschitz condition in Ω and

h(t,Ω)≤ A implies b(h(t,Ω))≤ L(t,Ω) , b ∈K (3.24)

h0 (t,Ω)≤ λ implies L(t,Ω)≤ a(h0 (t,Ω)) , a ∈K (3.25)

and the inequality

D+L(t,Ω)≤ g(t,L(t,W (t,s,Ω))) , (t,Ω) ∈ S (h,A) (3.26)

where g ∈C [R+×R+,R] , and W (t) =W (t,τ0,V0−U0) is the solution of (2.13) and

Ω(t,τ0,V0−U0) =V (t)−Ũ (t) f or t ≥ τ0 (3.27)
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(iv) ϕ (λ )< A and a(λ )< b(A) hold.

Then, the practical stability of the solution of the equation

du(s)
ds

=g(t,s,u(s)) , u(τ0)=u0≥0 (3.28)

for τ0≤s≤t<∞, with g(t,0) = 0, implies that the corresponding ITD (h0,h)-practically stability property of the solution V (t,τ0,V0) of
(2.12) for t ≥ τ0 with respect to the solution Ũ (t,τ0,U0) = U (t−η , t0,U0), for η = τ0− t0, where U (t) = U (t, t0,U0) is the solution of
(2.10) through (t0,U0) for t ≥ t0.

Proof. Consider the practical stability of the solution u(t,τ0,u0) of (3.28) for t ≥ τ0, with the assumption in (iv), that a(λ )< b(A) , we may
write, for t ≥ τ0,

u0 < a(λ ) implies u(t,τ0,u0)< b(A) (3.29)

We shall prove that the solution V (t,τ0,V0) of (2.12) for t ≥ τ0 is ITD (h0,h)-practically stable with respect to the solution Ũ corresponding
to (λ ,A).

If we assume this assertion is not true, then there would exist a t1 > τ0 and a solution W (t) =W (t,τ0,V0−U0) of (2.13) for t ≥ τ0 such that

h0 (τ0,V0−U0)< λ ,

h(t1,V (t1,τ0,V0)−U (t1−η , t0,U0)) = A,

h(t,V (t,τ0,V0)−U (t−η , t0,U0))< A f or τ0 ≤ t < t1

(3.30)

Since φ ∈K is strictly monotone increasing, the assumptions (ii) and (iv) give us

h(τ0,V0−U0)≤ φ (h0 (τ0,V0−U0))< φ (λ )< A (3.31)

Thus, in view of (3.26), and by using [Theorem 1.3.1] in [23], we have the following inequality

L(t,V (t,τ0,V0)−U (t−η , t0,U0))≤ γ (t,τ0,u0) , τ0 ≤ t ≤ t1 (3.32)

where γ (t,τ0,u0) is the maximal solution of (3.28) for t ≥ τ0 and u0 = L(τ0,V0−U0) .

Since a ∈K is strictly monotone increasing, the assumptions (iii) and (iv) give us

u0 = L(τ0,V0−U0)≤ a(h0 (τ0,V0−U0))< a(λ ) (3.33)

Considering that (3.29) holds for any solution u(t,τ0,u0) of (3.28) for t ≥ τ0, so it holds for the maximal solution γ (t,τ0,u0) of (3.28) for
t ≥ τ0, this yield

γ (t,τ0,u0)< b(A) , t ≥ τ0 (3.34)

The last inequality holds for any t ≥ τ0 so it holds for t = t1 ≥ τ0.

Thus, employing (iii), (3.30), (3.32) and (3.34), we have

b(A) = b(h(t1,V (t1,τ0,V0)−U (t1−η , t0,U0)))≤ L(t1,V (t1,τ0,V0)−U (t1−η , t0,U0))≤ γ (t1,τ0,u0)< b(A) (3.35)

This contradiction proves the assertion. Hence, the solution V (t,τ0,V0) of (2.12) for t ≥ τ0 is ITD (h0,h)-practically stable with respect to
the solution Ũ .

The next theorem gives sufficient conditions to the ITD (h0,h)-practically stability of the solution V (t,τ0,V0) of (2.12) through (τ0,V0) for
t ≥ τ0 with respect to the solution Ũ (t) =U (t−η , t0,U0) for t ≥ t0, where U (t) =U (t, t0,U0) is the solution of (2.10) through (t0,U0) for
t ≥ t0; providing that the solution V (t,τ0,V0) of (2.12) is ITD (h0,h0)-practically stable with respect to Ũ .

Theorem 3.4. Assume that

(i) Both L(t,Ω)∈C [R+×Kc (Rn) ,R+] and ‖W (t,s,Ω)‖ satisfy a local Lipschitz condition in Ω for any t,s; where W (t) =W (t,τ0,V0−U0)
is the solution of (2.13) for t ≥ τ0 and

Ω(t,τ0,V0−U0) =V (t)−Ũ (t) f or t ≥ τ0 (3.36)

(ii)

D∗−L(t,s,Ω)≤ 0 in S (h,M) (3.37)

where

S (h,M) = {(t,Ω) : h(t,Ω)< M for some h ∈ Γ and M > 0} (3.38)

and

D∗−L(t,s,Ω) = lim
δ→0−

inf
1
δ

(
L
(
s+δ ,W

(
t,s+δ ,Ω+δ

(
(PV )(s)−

(
Q̃Ũ
)
(s)
)))
−L(s,W (t,s,Ω))

)
(3.39)
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(iii) For b ∈K and a1,a0 ∈ CK,

b(h(t,Ω))≤ L(t,Ω) in S (h,M) and L(t,Ω)≤ a1 (t,h(t,Ω))+a0 (t,h0 (t,Ω)) in S (h,M)∩S (h0,M) (3.40)

(iv) h0 is finer that h, that is, there exists a function φ ∈K such that

h0 (t,Ω)≤M0 implies h(t,Ω)≤ φ (h0 (t,Ω)) (3.41)

for some M0 with φ (M0)≤M;

(v) The solution V (t,τ0,V0) of (2.12) for t ≥ τ0 is ITD (h0,h0)-practically stable with respect to the solution Ũ (t,τ0,U0) =U (t−η , t0,U0),
for η = τ0− t0.

Then, this implies the ITD (h0,h)-practically stability of the solution V (t,τ0,V0) of (2.12) for t ≥ τ0 with respect to the solution Ũ.

Proof. We shall show that the solution V (t,τ0,V0) of (2.12) for t ≥ τ0 is ITD (h0,h)-practically stable with respect to the solution Ũ , that is,
given any (λ ,A) with 0 < λ < A and for some τ0 ∈ R+, we have

h0 (τ0,V0−U0)< λ implies h(t,Ω(t))< A f or t ≥ τ0 (3.42)

If (3.42) is not true, then there exist solutions Ũ (t) =U (t−η , t0,U0), where U (t, t0,U0) is the solution of (2.10) for t ≥ t0; and V (t) =
V (t,τ0,V0) of (2.12) for t ≥ τ0, and t1 > τ0 such that

h0 (τ0,V0−U0)< λ , h(t1,Ω(t1)) = A and h(t,Ω(t))≤ A, f or τ0 ≤ t ≤ t1 (3.43)

where Ω(t) =V (t)−Ũ (t) for t ≥ τ0.

By Theorem 3.2, we have

L(t,Ω(t))≤ L(τ0,W (t,τ0,V0−U0)) , f or τ0 ≤ t ≤ t1 (3.44)

Starting from the statement of b(A) and using the assumptions (iii), (3.43) and (3.44), we obtain

b(A) = b(h(t1,Ω(t1)))≤ L(t1,Ω(t1))≤ L(τ0,W (t1,τ0,V0−U0))

≤ a1 (τ0,h(τ0,W (t1,τ0,V0−U0)))+a0 (τ0,h0 (τ0,W (t1,τ0,V0−U0)))
(3.45)

We aim to reach a contradiction to conclude the proof of the theorem. We will use the assumption (v) for this purpose.

Given 0 < A < M and that there exists a M0 with φ (M0)≤M. Choosing N1 = N1 (τ0,A) such that 0 < N1 (τ0,A)< M0, and

h0 (t,Ω(t))< N1 implies a0 (t,h0 (t,Ω(t)))<
b(A)

2
f or t ≥ τ0 (3.46)

By assumption (v), corresponding to this N1, there exists a λ1 = λ1 (τ0,N1) such that

h0 (τ0,V0−U0)< λ1 implies h0 (t,Ω(t))< N1 f or t ≥ τ0 (3.47)

Thus (3.46) and (3.47) give us

h0 (τ0,V0−U0)< λ1 implies a0 (t,h0 (t,Ω(t)))<
b(A)

2
f or t ≥ τ0 (3.48)

Similarly, we choose N2 = N2 (τ0,A) such that 0 < N2 (τ0,A)< M0 and

h(t,Ω(t))< N2 implies a1 (t,h(t,Ω(t)))<
b(A)

2
f or t ≥ τ0 (3.49)

By the assumptions (iv) and (v) also, corresponding to φ−1 (N2), there exists a λ2 = λ2 (τ0,N2) such that

h0 (τ0,V0−U0)< λ2 implies h0 (t,Ω(t))< φ
−1 (N2) f or t ≥ τ0 (3.50)

Since φ ∈K is strictly monotone increasing; then, we have by taking the composition of φ of both sides of the inequality h0 (t,Ω(t))<
φ−1 (N2) in (3.50), with considering (3.41),

h0 (τ0,V0−U0)< λ2 implies h(t,Ω(t))≤ φ (h0 (t,Ω(t)))< φ

(
φ
−1 (N2)

)
= N2 f or t ≥ τ0 (3.51)

So, (3.49) and (3.51) give us, for t ≥ τ0,

h0 (τ0,V0−U0)< λ2 implies a1 (t,h(t,Ω(t)))<
b(A)

2
(3.52)

Let λ = min{λ1,λ2} , then with this λ the following statement holds.

h0 (τ0,V0−U0)< λ implies a0 (t,h0 (t,Ω(t)))<
b(A)

2
and a1 (t,h(t,Ω(t)))<

b(A)
2

f or t ≥ τ0 (3.53)

Hence, when t = t1, using (3.53), the statement (3.45) can be written as

b(A) = b(h(t1,Ω(t1)))≤ L(t1,Ω(t1))≤ L(τ0,W (t1,τ0,V0−U0))

≤ a1 (τ0,h(τ0,W (t1,τ0,V0−U0)))+a0 (τ0,h0 (τ0,W (t1,τ0,V0−U0)))<
b(A)

2
+

b(A)
2

= b(A)
(3.54)

This contradiction proves that the solution V (t,τ0,V0) of (2.12) through (τ0,V0) for t ≥ τ0 is ITD (h0,h)-practically stable with respect to
the solution Ũ .
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4. Conclusion

In this manuscript, we have presented sufficient conditions for ITD practical stability in terms of two measures for the solutions of perturbed
SDEs involving causal operators in regard to their unperturbed ones, and proved the sufficincy of these conditions using ITD variational
comparison results.
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[41] C. Yakar, M. Çiçek and M. B. Gücen, Boundedness and Lagrange stability of fractional order perturbed system related to unperturbed systems with
initial time difference in Caputo’s sense, Advances in Difference Equations, 54, (2011), 1-14. doi: 10.1186/1687-1847-2011-54



158 Konuralp Journal of Mathematics
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