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It is known that there is a relationship between stress factors and longevity and many stress factors are effective on longevity and aging. One 
of the stress factors is temperature. Global warming, whose effects keep rising nowadays and better understood by the people, and climate changes 
depending on global warming are strengthening the effects of this stress factor. In this study, the effects of heat shock on the longevity of Drosophila 
melanogaster were analyzed. The fl ies used in the experiments were Oregon R wild type and Vestigial mutant type of D. melanogaster. For this 
study, a 39°C heat shock was applied to the experimental groups at different durations (1, 2 and 3 hours). According to our results, it was observed 
that the mean female and male populations life span of the Oregon R wild type and Vestigial mutant type of D. melanogaster was reduced depending 
on the increase in the duration on the experimental groups (p<0.05 and p<0.001). 
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INTRODUCTION

Aging, the mechanism of which we still have unknown 
points about, can be defi ned as “all of the events in total which 
are arranged by the genetic code and cause the organism to 
die due to structural and functional changes” [1]. It was fi rst 
mentioned by Comfort (1966) [2] that the key to increasing 
longevity was to understand the formation mechanism of 
aging and the problems that lie underneath this mechanism. 
It is known that besides temperature, stress factors are also 
important factors affecting the longevity of living things [3-5]. 
Global warming, the effects of which have recently started to be 
felt more along with the global climate changes due to global 
warming have brought forward the stress conditions that might 
arise as a result of heat shocks [6, 7]. 

Today, one of the most important ecological issues of 
mankind is “Global Warming and Climate Change” [8]. It is 
unavoidable that global warming will affect the insects besides 
all living creatures on the world. It is expected that the changes 
in temperature, humidity and CO2, as a result of global warming 
will also affect the insects [9, 10]. Insects are cold-blooded 
organisms and the temperatures of their body are approximately 
at the same temperature as their environment. Therefore, the 
changes in humidity, CO2 and especially in temperature may 
infl uence the insect behaviour, distribution, development, 
reproduction and longevity [11-13].

The fruit fl y Drosophila melanogaster is one of the favorite 
models of Biogerontologists. In this study, the infl uence of 
heat shock, one of the stress factors effecting the longevity 
of the Oregon R wild type and Vestigial mutant strains of the 
Drosophila melanogaster was investigated.

MATERIALS AND METHODS

Origin and Maintenance of Drosophila melanogaster
The fl ies used in the experiments were Oregon R wild 

type (w.t.) and Vestigial (vg) mutant strains of Drosophila 
melanogaster Meigen (Diptera; Drosophilidae). These stocks 
have been maintained for many years in the Laboratory at the 
Department of Biology of the Atatürk University in Erzurum 
and were, therefore, highly inbred with little genetic variation. 
The fl ies were kept at a constant temperature of 25±1°C on 
standard medium composed of maize-fl our, agar, sucrose, dried 
yeast and propionic acid (Standard Drosophila Medium= SDM) 
[14]. The fl ies were kept in darkness, except during the transfer 
onto a fresh medium (usually half weekly). The humidity of the 
experimental chamber was 40-60%. The females used in this 
experiment were virgins.

Experimental Protocol
In this study, the effects of heat shock on longevity were 

studied separately on the female and male populations. To obtain 
same-aged fl ies, adult individuals mated in the culture vials with 
only SDM and prestocks were prepared. On the average, 100 
individuals were collected from Oregon R and Vestigial of the 
female and male fl ies which were not mated. Virgin fl ies were 
obtained from pupa at ±8 hours. Then, 100 individuals were put 
into one vial for the application (separately applied for female 
and male fl ies) and then were placed into the culture vials 
containing only SDM as 25 by 25. After 3 days, the adult female 
and male fl ies were separately exposed to heat shocks of various 
durations (1, 2 and 3 hours) in a thermal cabin set at 39˚C and all 
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the vials were kept in the appropriate thermal cabins (25±1˚C). 
During the experiments the adult fl ies were transferred to fresh 
vials every 3 days. The number of individuals were controlled 
both at the beginning and at the end of every application day, 
and the dead individuals were registered and then removed from 
the environment. The application was carried out until the last 
individual died.

Statistical Analyses 
The obtained data were analyzed with SPSS (version 13.0). 

The mean longevity of the control and experimental groups 
were compared using the Duncan Test and the Games- Howell 
Test on the probability levels of 0.05 and 0.001. 

RESULTS 

The Effects of Heat Shock on the Longevity of the 
Oregon R Strains (w.t.) of D. melanogaster 

According to our results, it was observed that the maximum 
life span of the control group was 76 days for the females and 73 
days for the males. In both sexes, the maximum life span of the 
experimental groups (G1wt, G2wt and G3wt) was compared with 
the control group, the maximum life span shortened depending 
on the application durations. In G1wt (exposed to heat shock for 
1h), G2wt (exposed to heat shock for 2h) and G3wt (exposed to 
heat shock for 3h) experimental groups, the maximum female 
life span was 73, 70 and 67 days respectively. Hovewer, it was 
determined that the maximum male life span was 70, 61 and 58 
days, respectively (Figure 1.).

The maximum mean female and male life span was 56.47±1.5 
and 51.22±1.3 days, respectively. The minimum mean life span 
was 43.39±1.8 days for the females and 37.39±1.5 days for the 
males. In both sexes, it was determined that the minimum mean 
life span was in G3wt which was exposed to heat shock for 3 
hours (Table 1.). 

When the mean life span of the male and female individuals 
and control group were compared, it was observed that the 
longevity of the experimental groups was shorter than the 
control. As shown in Table 1., except for only one experimental 
group (in females, Cwt -G1wt), the difference between the groups 
in longevity was statistically signifi cant (p<0.05 and p<0.001).
When the mean life span of male and female individuals of 
Oregon R strains of D. melanogaster were compared, it was 
observed that the females in all of the groups survived longer 
than the males (Table 1.). 

The Effects of Heat Shock on the Longevity of Vestigial 
(vg) Mutant Strains of D. melanogaster

As seen in Table 1., it was observed that the maximum life 
span of the control group was 64 days for the females and 70 
days for the males. In both sexes, the maximum life span of 
the experimental groups (G1vg, G2vg and G3vg) were compared 
with the control group, the maximum life span shortened 
depending on the application durations. In G1vg, G2vg and G3vg 
experimental groups, the maximum female life span was 61, 52 
and 49 days, respectively. Hovewer, it was determined that the 
maximum male life span was 64, 55 and 52 days, respectively 
(Figure 2.).

The maximum mean female and male life span was 46.09±0.9 
and 48.01±1.3 days, respectively. The minimum mean life span 
was 36.79±1.1 days for the females and 34.51±1.5 days for the 
males. In both sexes, it was determined that the minimum mean 
life span was in G3vg which was exposed to heat shock for 3 
hours (Table 1.). 

When the mean life span of the male and female individuals 
and the control group were compared, it was observed that in 
all of the experimental groups the life span was shorter than 
the control group. As shown in Table 1., except for only one 
experimental group (in females, G1vg -G2vg), the difference 
between the groups in longevity was statistically signifi cant 
(p<0.05 and p<0.001).

♀♀ ♂

Fig.1. The survival lines of Oregon R wild type of Drosophila melanogaster female and male individuals exposed to heat shock at different 
durations



47A.Ayar et al / JABS, 6 (1): 45-49, 2012

Table 1. The longevity of Oregon R wild type and Vestigial mutant type male and female populations of Drosophila 
melanogaster and the probability levels between groups.

EXPERIMENT 
GROUPS

GROUP 
NAME SEX N

MAX. 
LIFE
(Days)

MEAN 
LIFE SPAN 
(Day)±S.E.

S.D.

PROBABILITY LEVELS BETWEEN 
GROUPS

For
Oregon

For
Vestigial

♀ ♂ ♀ ♂

Control

Cwt

♂ 100 73 51.22±1.3 13.03

C-2*

C-3**

1-2*

1-3**

2-3*

C-1*

C-2**

C-3**

1-2*

1-3**

2-3*

C-1*

C-2**

C-3**

1-3**

2-3*

C-1*

C-2**

C-3**

1-2*

1-3**

2-3*

♀ 100 76 56.47±1.5 15.55

Cvg

♂ 100 70 48.01±1.3 13.56

♀ 100 64 46.09±0.9 9.43

Application of heat 
shock

(1 hour)

1wt

♂ 100 70 47.02±1.3 13.34

♀ 100 73 54.40±1.6 16.27

1vg

♂ 100 64 43.90±1.4 14.26

♀ 100 61 42.70±1.4 14.52

Application of heat 
shock

(2 hours)

2wt

♂ 100 61 41.74±1.5 15.16

♀ 100 70 49.36±1.6 16.24

2vg

♂ 100 55 39.13±1.3 13.39

♀ 100 52 40.36±1.2 12.60

Application of heat 
shock

(3 hours)

3wt

♂ 100 58 37.39±1.5 15.41

♀ 100 67 43.39±1.8 18.85

3vg

♂ 100 52 34.51±1.5 15,06

♀ 100 49 36.79±1.1 11.41

Max.: Maximum, N: Total number of individuals, S.E.: Standart Error, S.D.: Standard deviation, wt: Oregon R, Vg: Vestigial, *: The mean difference 
is signifi cant at the 0.05 level. **: The mean difference is signifi cant at the 0.05 and 0.001 level.

♀♀ ♂

Fig.2. The survival lines of Vestigial mutant type of Drosophila melanogaster female and male individuals exposed to heat shock at different 
durations
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DISCUSSION

The relationship between the longevity of D. melanogaster 
and temperature was fi rst researched by Loeb and Northrop 
(1916) [15]. As a result of these studies, it was determined 
that there is a certain temperature coeffi cient for the life span 
and that there is an inverse proportion between longevity and 
temperature. In another study, the relationship between the 
applications of heat shock at 37°C at varying daily and weekly 
periods and longevity was analyzed. As a result, the shortest 
longevity was determined in the group on which heat shock was 
applied the most [3].  Pearl and Miner (1935) [16], has stated 
that aging depends on temperature just like chemical reactions. 
The longer longevity of Drosophila at high temperatures is 
simply thought to be the result of Drosophila’s activity and high 
metabolism rate at these temperatures [17], have stated that the 
optimum temperature interval for male and female Drosophila 
individuals is between 16-29°C and that suddenly more deaths 
are observed below 12°C and above 32.5°C. The results that we 
have found also support this. 

In many studies, some stress factors   (i.e: hypergravity, 
heat or cold shock) when at a low rate and in a short time are 
applied to D. melanogaster, it shows an hormetic effect, but 
when intensity and time of application were increased, it was 
observed that there were harmfull effects [18-20]. These results 
were similiar to ours.

An important part of the cellular response to heat stress is 
constituted by a group of genes coding for heat shock proteins 
(HSPs) or stress proteins because their expression can be 
induced by high temperatures and a whole range of other stress 
factors [21]. HSPs constitute an inducible part of molecular 
chaperones that play important roles in transport, folding, 
unfolding, assembly and disassembly of multistructured protein 
complexes, signal pathways, degradation of misfolded or 
aggregated proteins, and the activation of enzymes and receptors 
[22]. The heat shock genes are upregulated after exposure to 
stressful, potentially damaging conditions and provide the 
organism with a temporary enhanced tolerance to stress [23].

The HSPs that were fi rst discovered in Drosophila are 
synthesized in all living things from mammals to bacteria. 
These proteins are synthesized under stress conditions and 
surround the other proteins that have important functions for 
the cell preventing their fractionation or cytolysis. In the study 
performed on D. melanogaster populations, the production of 
HSP22 was stopped and its effect on longevity was analyzed. 
As a result, a 40% decrease in the longevity in comparison to the 
control group was observed in the absence of HSP22 with the 
heat shock application [24]. In another study, the effect of heat 
shock on HSP70 production and survival of D. melanogaster 
populations of different age groups (0-8 days) was analyzed. 
As a result it was observed that there is an inverse proportion 
between the age groups and HSP70 production and survival [25, 
26]. In order to avoid such an effect in our study, individuals at 
the same age (3 days) were used for all heat shock applications. 

According to Nielsen et al. (2005) [27], the most important 
effect of lethal temperatures is protein denaturation. During 
shock, the three dimensional structure is disrupted due to 
the rupturing of the H bonds of some enzymes in the protein 
structure and along with the increase of entropy; the enzyme 
loses its catalytic activity. Consequently some physiological 
events that will continue throughout the life span may take place 
wrongfully and as a result longevity may decrease. According 

to another point of view, deaths that occur as a result of heat 
shock may be linked to the increase of the salt concentration of 
the body and the increase of free radicals that are formed due to 
lipid peroxidation [28]. 

Since insects are cold blooded (polychlothermal) beings, 
increase in ambient temperature causes an increase in their 
metabolic activities, respiration rates and free radical formations 
causing cellular damage and the decrease in longevity. It 
means that as temperature which enables life increases, heat 
production and oxygen usage increases while longevity 
decreases [29]. Whereas free radicals cellular activities at 
normal physiological concentrations, they may cause oxidative 
stress and become toxic at high concentrations. As a result 
they increase the aging process causing genetic, metabolic 
and neurodegenerative disorders and even cancer [30, 31].  
Strehler (1961) [32]  has suggested that aging is dependent 
upon temperature and has explained the possible mechanisms 
between aging and temperature with the increase of the 
high temperature degeneration rate of temperature sensitive 
structure and functional elements such as cells, proteins and 
nucleoproteins, the increase of the catabolism and usage rates of 
various metabolites such as cofactor and catalyst, the increase 
at high temperatures of the accumulation rate of various toxic 
materials or the fact that they can’t be easily thrown out of the 
body.  

Though natural species are capable of adapting to climate 
changes in a long process, many plants and animals cannot 
adapt to rapid climate changes. Our results suggest that, 
extreme temperature conditions provided by rapid temperature 
changes, shorten male and female longevity of the Oregon R 
wild and Vestigial mutant strains of D. melanogaster. Any other 
effects of global warming and climate changes on the longevity 
of species should be investigated by other studies.
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