Chebyshev Polynomial Solutions of Certain Second Order Non-Linear Differential Equations

Cenk KEŞAN ${ }^{1, \ldots}$
${ }^{I}$ Dokuz Eylül University, Department of Mathematical Education, 35150 Buca, İzmir, TURKEY

Received: 04/05/2011 Accepted: 26/05/2011

Abstract

The purpose of this study is to give a Chebyshev polynomial approximation for the solution of second-order non-linear differential equations with variable coefficients. For this purpose, Chebyshev matrix method is introduced. This method is based on taking the truncated Chebyshev expansions of the functions in the nonlinear differential equations. Hence, the result matrix equation can be solved and the unknown Chebyshev coefficients can be found approximately. Additionally, the mentioned method is illustrated by two examples.

Key Words: Non-linear differential equations, Chebyshev-matrix method, Approximate solution of non-linear ordinary differential equations.

1. INTRODUCTION

The Chebyshev matrix method has been presented by Keşan [2] to solve linear differential equations. This method has been also used by Köroğlu [3] to solve linear Fredholm integrodifferential equations. Additionally, Cantürk-Günhan [1] has extended this method to solve
non-linear differential and integral equations. In this work, we adapt Chebyshev -Matrix method to secondorder non-linear differential equations. It is presented as follow:

$$
\begin{equation*}
\sum_{k=1}^{s} P_{k}(x)\left(y^{\prime \prime}\right)^{k}+\sum_{k=1}^{m} Q_{k}(x)\left(y^{\prime}\right)^{k}+\sum_{k=1}^{n} R_{k}(x)(y)^{k}=F(x) \quad \mathrm{s}, \mathrm{~m}, \mathrm{n}=1,2, \ldots \tag{1}
\end{equation*}
$$

[^0]where $\quad P_{k}(x), Q_{k}(x), R_{k}(x)$ and $F(x) \quad$ are functions having Chebyshevexpansions on an interval $a \leq x \leq b$, under the given conditions, which are
$\sum_{i=0}^{2}\left[a_{i} y^{(i)}(a)+b_{i} y^{(i)}(b)+c_{i} y^{(i)}(c)\right]=\lambda$
$\sum_{i=0}^{2}\left[\alpha_{i} y^{(i)}(a)+\beta_{i} y^{(i)}(b)+\gamma_{i} y^{(i)}(c)\right]=\mu$
where $a \leq c \leq b$, provide that the real coefficients $a_{i}, b_{i}, \alpha_{i}, \beta_{i}, \lambda$ and μ are appropriate constants; and the solution is expressed in the form
\[

$$
\begin{equation*}
y(x)=\sum_{r=0}^{n} \mathrm{a}_{\mathrm{r}} T_{r}(x) \tag{3}
\end{equation*}
$$

\]

under the certain conditions $r=0,1,2, \ldots$ And, $\quad \sum^{\prime}$ denotes a sum whose first term is halved.

2. FUNDAMENTAL RELATIONS

Let us assume that the function $y(x)$ its nth derivative with respect to x, respectively, can be expanded in Chebyshev series

$$
y(x)=\sum_{r=0}^{\infty} ' a_{r} T_{r}(x) \quad \text { and }
$$

$$
y^{(n)}(x)=\sum_{r=0}^{\infty}{ }^{\prime} a_{r}^{(n)} T_{r}(x)
$$

The recurrence relation between the Chebyshev coefficients $\quad a_{r}^{(n)}$ and $a_{r}^{(n+1)}$ of $y^{(n)}(x)$ and $y^{(n+1)}(x)$, is given by
$a_{r}^{(n+1)}=2 \sum_{i=0}^{\infty}(r+2 i+1) a_{r+2 i+1}^{(n)}$
Now let us take $\mathrm{r}=0,1, \ldots, \mathrm{~N}$ and assume $a_{r}^{(n)}=0$ for $r>N$. Then the system (4) can be transformed into the matrix form

$$
\begin{equation*}
A^{(n+1)}=2 M A^{(n)}, n=0,1,2, \ldots \tag{5}
\end{equation*}
$$

where

$$
A^{(n)}=\left[\begin{array}{llll}
\frac{1}{2} a_{0}^{(n)} & a_{1}^{(n)} & \ldots & a_{N}^{(n)}
\end{array}\right]^{T}
$$

for add N

$$
M=\left[\begin{array}{cccccccccc}
0 & \frac{1}{2} & 0 & \frac{3}{2} & 0 & \frac{5}{2} & . & . & . & \frac{N}{2} \\
0 & 0 & 2 & 0 & 4 & 0 & . & . & . & 0 \\
0 & 0 & 0 & 3 & 0 & 5 & . & . & . & N \\
. & . & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . & N \\
0 & 0 & 0 & 0 & 0 & 0 & . & . & . & 0
\end{array}\right]_{(N+1) x(N+1)}
$$

$$
M=\left[\begin{array}{cccccccccc}
0 & \frac{1}{2} & 0 & \frac{3}{2} & 0 & \frac{5}{2} & . & . & . & 0 \\
0 & 0 & 2 & 0 & 4 & 0 & . & . & . & N \\
0 & 0 & 0 & 3 & 0 & 5 & . & . & . & 0 \\
. & . & . & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . & N \\
0 & 0 & 0 & 0 & 0 & 0 & . & . & . & 0
\end{array}\right]_{(N+1) x(N+1)}
$$

It follows from relation (5) that
$A^{(n)}=2 M A^{(n-1)}=2^{n} M^{n} A$.
where clearly

$$
A^{(0)}=\left[\begin{array}{llll}
\frac{1}{2} a_{0} & a_{1} & \ldots & a_{N}
\end{array}\right]^{T}
$$

The matrix equation (6) gives a relation between the Chebyshev coefficient matrix A of $y(x)$ and the Chebyshev coefficient matrix $A^{(n)}$ of the nth derivative of $y(x)$.
We can also assume that
$[y(x)]^{n}=\sum_{r=0}^{n N} '_{r}^{n} T_{r}(x)$
$\left[y^{\prime}(x)\right]^{m}=\sum_{r=0}^{m N} a_{r}^{(1) m} T_{r}(x)$, and
$\left[y^{\prime \prime}(x)\right]^{s}=\sum_{r=0}^{s N} a_{r}^{(2) s} T_{r}(x)$
The recurrence relation between the Chebyshev coefficients $\quad a_{r}^{n}, a_{r}^{(1) m}, a_{r}^{(2) s}$ and $a_{r} \quad$ of $[y(x)]^{n},\left[y^{\prime}(x)\right]^{m},\left[y^{\prime \prime}(x)\right]^{s}$ and $[y(x)]$, is given by

$$
\begin{aligned}
& a_{r}^{n}=\sum_{i=0}^{n N} a_{i}\left(a_{i+r}^{n-1}+a_{r-i}^{n-1}\right) \\
& i+r \leq n N \text { where } \\
& a_{r}^{(1) m}=\sum_{i=0}^{m N} a_{i}^{(1)}\left(a_{i+r}^{(1), m-1}+a_{r-i}^{(1), m-1}\right), \text { where } \\
& i+r \leq m N \\
& a_{r}^{(2) s}=\sum_{i=0}^{s N} a_{i}^{(2)}\left(a_{i+r}^{(2), m-2}+a_{r-i}^{(2), m-2}\right), \text { where } \\
& i+r \leq s N
\end{aligned}
$$

and $\quad a_{r-i}^{n-1}=0, a_{r-i}^{(1), m-1}=0, a_{r-i}^{(2), m-2}=0 \quad$ for $r-i \leq 0,\left(\mathrm{a}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}^{1}, a_{i}^{(1)}=a_{i}^{(1), 1}, a_{i}^{(2)}=a_{i}^{(2), 1}\right)$.
Now let us take $r=0,1, \ldots, N$ and assume $a_{r}^{n}=0, a_{r}^{(1) m}=0, a_{r}^{(2) s}=0$ and $a_{r}=0$
for $r>N$. Then the system can be transformed into matrix form

$$
\begin{aligned}
& A^{n}=\left[\begin{array}{llll}
\frac{1}{2} a_{0}^{n} & a_{1}^{n} & \ldots & a_{N}^{n}
\end{array}\right]^{T}, \\
& A^{(1) m}=\left[\begin{array}{llll}
\frac{1}{2} a_{0}^{(1) m} & a_{1}^{(1) m} & \ldots & a_{N}^{(1) m}
\end{array}\right]^{T}, \\
& A^{(2) s}=\left[\begin{array}{llll}
\frac{1}{2} a_{0}^{(2) s} & a_{1}^{(2) s} & \ldots & a_{N}^{(2) s}
\end{array}\right]^{T}
\end{aligned}
$$

3. METHOD OF SOLUTION

To obtain the solution of Eq. (1) in the form of expression (3) we first reduce Eq.(1) to a differential equation whose coefficients are polynomials. For this purpose, we assume that the functions $P_{k}(x), Q_{k}(x)$, and $R_{k}(x)$ can be expressed in the forms
$P_{k}(x)=\sum_{i=0}^{I} p_{i} x^{i} \quad Q_{k}(x)=\sum_{i=0}^{I} q_{i} x^{i}$
$R_{k}(x)=\sum_{i=0}^{I} r_{i} x^{i}$
which are Taylor polynomials of degree I. By using the expressions (7) in Eq. (1), we get
$\sum_{k=1}^{s} \sum_{i=0}^{I} p_{i, k} x^{i}\left[y^{\prime \prime}(x)\right]^{k}+\sum_{k=1}^{m} \sum_{i=0}^{I} q_{i, k} x^{k}\left[y^{\prime}(x)\right]^{k}+\sum_{k=1}^{n} \sum_{i=0}^{I} r_{i, k} x^{i}[y(x)]^{k}=f(x)$
and $\quad M_{\varepsilon}=\left\lfloor m_{i j}\right\rfloor, \quad(i=0,1, \ldots, N+1 \quad$ and $j=0,1, \ldots N+1) \quad$ is a matrix of size $(N+1) \times(N+1)$. The elements of M_{p} are given in [3].
Also we assume that the function $f(x)$ can be expanded as

$$
f(x)=\sum_{r=0}^{N} f_{r} T_{r}(x)
$$

or in the matrix form
$[f(x)]=T_{x} F$
where

$$
F=\left[\begin{array}{llll}
\frac{1}{2} f_{0} & f_{1} & \ldots & f_{N}
\end{array}\right]^{T} \quad \begin{aligned}
& \text { Substittuting the expressions (9) and (10) into Eq. (8) and } \\
& \text { simplifying the result, we have the matrix equation }
\end{aligned}
$$

$$
\begin{equation*}
\sum_{k=1}^{s} \sum_{i=0}^{I} p_{i, k} M_{i} A^{(2) s}+\sum_{k=1}^{m} \sum_{i=0}^{I} q_{i, k} M_{i} A^{(1) m}+\sum_{k=1}^{n} \sum_{i=0}^{I} r_{i, k} M_{i} A^{n}=F \tag{11}
\end{equation*}
$$

which corresponds to a system of $(N+1)$ algebraic $\quad W=F$
equations for the unknown Chebyshev coefficients $a_{r}, r=0,1, \ldots, N$.

Briefly, we can write this equation in the form
So that

$$
W=\left[w_{t}\right]=\sum_{k=1}^{s} \sum_{i=0}^{I} p_{i, k} M_{i} A^{(2) s}+\sum_{k=1}^{m} \sum_{i=0}^{I} q_{i, k} M_{i} A^{(1) m}+\sum_{k=1}^{n} \sum_{i=0}^{I} r_{i, k} M_{i} A^{n}
$$

Then the augmented matrix of Eq.(12) becomes

$$
[W ; F]=\bar{W}=\left[\begin{array}{ccc}
w_{0} & ; & \frac{1}{2} f_{0} \tag{13}\\
w_{1} & ; & f_{1} \\
\cdot & ; & \cdot \\
\cdot & ; & \cdot \\
w_{N} & ; & f_{N}
\end{array}\right]
$$

Next we can obtain the corresponding matrix forms for the conditions (2) as follows: The expression (3) and its derivative are equivalent to the matrix equations
$y^{(0)}(x)=\left[\begin{array}{llll}T_{0}(x) & T_{1}(x) & \ldots & T_{N}(x)\end{array}\right] A$,
$y^{(1)}(x)=2\left[\begin{array}{llll}T_{0}(x) & T_{1}(x) & \ldots & T_{N}(x)\end{array}\right] M A$
and
$y^{(2)}(x)=4\left[\begin{array}{llll}T_{0}(x) & T_{1}(x) & \ldots & T_{N}(x)\end{array}\right] M^{2} A$
where
$A=\left[\frac{1}{2} a_{0} \quad a_{1} \quad \ldots \quad a_{N}\right]$

By using these equations, the quantities $y^{(i)}(a), y^{(i)}(b)$ and $i=1,2$ can be written as where u_{j} and v_{j} are related to the coefficients $a_{i}, b_{i}, \alpha_{i}, \beta_{i}$ in Eq. (2). Of course, we should be

$$
\begin{align*}
& y^{(0)}(a)=\left[\begin{array}{llll}
T_{0}(a) & T_{1}(a) & \ldots & T_{N}(a)
\end{array}\right] A \\
& y^{(0)}(b)=\left[\begin{array}{llll}
T_{0}(b) & T_{1}(b) & \ldots & T_{N}(b)
\end{array}\right] A \tag{14}
\end{align*}
$$

$y^{(1)}(a)=2\left[\begin{array}{llll}T_{0}(a) & T_{1}(a) & \ldots & T_{N}(a)\end{array}\right] M A$ $y^{(1)}(b)=2\left[\begin{array}{llll}T_{0}(b) & T_{1}(b) & \ldots & T_{N}(b)\end{array}\right] M A$
$y^{(2)}(a)=4\left[T_{0}(a) \quad T_{1}(a) \quad \ldots \quad T_{N}(a)\right] M^{2} A$
$y^{(2)}(b)=4\left[T_{0}(b) \quad T_{1}(b) \quad \ldots \quad T_{N}(b)\right] M^{2} A$
Substituting quantities (14) into Eq. (2) and then simplifying, we obtain the matrix forms of the first and second conditions defined in Eq. (2), respectively, as
$U=[\lambda]$ and $V=[\mu]$
or the augmented matrices, more clearly,
$\bar{U}=\left[\begin{array}{lll}u_{0} & ; & \lambda\end{array}\right]$ and $\bar{V}=\left[\begin{array}{lll}v_{0} & ; & \mu\end{array}\right]$
careful in the choice of coefficients of the conditions given by Eq. (2).

Consequently, by replacing the two rows matrices (10) by the last two rows of the augmented matrix (13), we have

$$
\bar{W}^{*}=\left[\begin{array}{ccc}
w_{0} & ; & \frac{1}{2} f_{0} \\
w_{1} & ; & f_{1} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
w_{N-2} & ; & f_{N-2} \\
u_{0} & ; & \lambda \\
v_{0} & ; & \mu
\end{array}\right]
$$

the required augmented matrix.
and approximate the solution $y(x)$ by the Chebyshev polynomial
$y(x)=\sum_{r=0}^{4}{ }^{\prime} a_{r} T_{r}(x)$
where $N=2$.

Example 4.1. Let us consider the initial value problem
$y^{\prime \prime}+y^{2}=x^{2}+2 x+1, \quad-1 \leq x \leq 1 \quad$ and
$y(0)=1, y^{\prime}(0)=1$
and thus by solving the system of $(N+1)$ algebraic equations, the matrix A (thereby the coefficients a_{r}) is determined.

4. EXAMPLES

The method is demonstrated by following examples.

The matrix equation for (11) becomes

$$
\begin{equation*}
\left\{A^{(2)}-A^{2}\right\}=F \text {. } \tag{19}
\end{equation*}
$$

$$
\left[\begin{array}{ccccc}
0 & 0 & 4 & 0 & 32 \\
0 & 0 & 0 & 24 & 0 \\
0 & 0 & 0 & 0 & 48 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\frac{a_{0}}{2} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]+\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2}\left(\frac{1}{2} a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right. \\
a_{0} a_{1}+a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4} \\
\frac{1}{2} a_{1}^{2}+a_{0} a_{2}+a_{1} a_{3} \\
a_{0} a_{3}+a_{1} a_{2}+a_{1} a_{4} \\
\frac{1}{2} a_{2}^{2}+a_{1} a_{3}+a_{0} a_{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
2 \\
\frac{1}{2} \\
0 \\
0
\end{array}\right] .
$$

$$
\left[\begin{array}{cc}
4 a_{2}+32 a_{4}+\frac{1}{2}\left(\frac{1}{2} a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right) & ; \frac{3}{2} \\
24 a_{3}+\left(a_{0} a_{1}+a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}\right) & ; 2 \\
48 a_{4}+\left(\frac{1}{2} a_{1}^{2}+a_{0} a_{2}+a_{1} a_{3}\right) & ; \frac{1}{2} \\
\left(a_{0} a_{3}+a_{1} a_{2}+a_{1} a_{4}\right) & ; 0 \\
\left(\frac{1}{2} a_{2}^{2}+a_{1} a_{3}+a_{0} a_{4}\right) & ; 0
\end{array}\right]
$$

and the augmented matrices corresponding to the conditions
$y(0)=1, y^{\prime}(0)=1$
are obtain as $\bar{U}=\left[\frac{1}{2} a_{0}-a_{2}+a_{4} \quad ; \quad 1\right]$ and $\bar{V}=\left[\begin{array}{ll}a_{1}-3 a_{3} & ;\end{array}\right]$.
$\bar{W}^{*}=\left[\begin{array}{cc}4 a_{2}+32 a_{4}+\frac{1}{2}\left(\frac{1}{2} a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right) & ; \frac{3}{2} \\ 24 a_{3}+\left(a_{0} a_{1}+a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}\right) & ; 2 \\ 48 a_{4}+\left(\frac{1}{2} a_{1}^{2}+a_{0} a_{2}+a_{1} a_{3}\right) & ; \frac{1}{2} \\ \frac{1}{2} a_{0}-a_{2}+a_{4} & ; 1 \\ a_{1}-3 a_{3} & ; 1\end{array}\right]$
and has the solution

$$
\text { where } N=2
$$

The matrix equation for (11) becomes
$a_{0}=2, a_{1}=1, a_{2}=0, a_{3}=0$.
and $a_{4}=0$

$$
\begin{equation*}
\left\{4 A^{(2)}-2 A^{(1) 2}+A\right\}=F \tag{20}
\end{equation*}
$$

Substituting these, we have
$y(x)=T_{0}(x)+T_{1}(x)$.
Equation 17 has the same solution by the Taylor Method for series solutions to second order.

Example 4.2. Let us consider the boundary value problem
$4 y^{\prime \prime}-2\left(y^{\prime}\right)^{2}+y=0 ; y(0)=-1, y^{\prime}(0)=0$
It's exact solution is expressed in the same book as
$y(x)=\frac{x^{2}}{8}-1$.
Now, we shall assume the approximate solution $y(x)$ by the Chebyshev polynomial form

$$
\begin{equation*}
y(x)=\sum_{r=0}^{4}{ }^{\prime} a_{r} T_{r}(x) \tag{22}
\end{equation*}
$$

$$
4\left(\left[\begin{array}{ccccc}
0 & 0 & 4 & 0 & 32 \\
0 & 0 & 0 & 24 & 0 \\
0 & 0 & 0 & 0 & 48 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\frac{a_{0}}{2} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]\right)-2\left[\begin{array}{c}
a_{1}^{2}+8 a_{2}^{2} \\
8 a_{1} a_{2} \\
8 a_{2}^{2} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{a_{0}}{2} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

$$
\left[\begin{array}{ccc}
\frac{1}{2} a_{0}-2\left(a_{1}^{2}+8\left(a_{2}^{2}-a_{2}\right)\right) & ; 0 \\
a_{1}\left(1-16 a_{2}\right) & ; & 0 \\
-16 a_{2}^{2}+a_{2} & ; & 0 \\
a_{3} & ; & 0 \\
a_{4} & ; & 0
\end{array}\right]
$$

and the augmented matrices corresponding to the conditions
$y(0)=-1, y^{\prime}(0)=0$,
are obtain as $\bar{U}=\left[\begin{array}{lll}\frac{1}{2} a_{0}-a_{2} & ; & -1\end{array}\right]$ and $\bar{V}=\left[\begin{array}{lll}a_{1} & ; & 0\end{array}\right]$.
$\bar{W}^{*}=\left[\begin{array}{ccc}\frac{1}{2} a_{0}-2\left(a_{1}^{2}+8\left(a_{2}^{2}-a_{2}\right)\right) & ; & 0 \\ a_{1}\left(1-16 a_{2}\right) & ; & 0 \\ -16 a_{2}^{2}+a_{2} & ; & 0 \\ \frac{1}{2} a_{0}-a_{2} & ; & -1 \\ a_{1}=0 & ; & 0\end{array}\right]$
and has the solution
$a_{0}=-\frac{15}{16}, a_{1}=a_{3}=a_{4}=0$ and $a_{2}=\frac{1}{16}$.
Substituting these, we have
$y(x)=-\frac{15}{16} T_{0}(x)+\frac{1}{16} T_{2}(x)$,
where $T_{0}(x)=1$ and $T_{2}(x)=2 x^{2}-1$.

It is safe to report that Chebyshev polynomial solution is congruent to exact solution of example 4.2.

5. CONCLUSIONS

In this paper, the usefulness of Chebyshev-matrix method for the polynomial solutions of second order nonlinear differential equations is discussed. These equations are usually difficult to solve analytically. In many cases, it is required to approximate solutions. A considerable advantage of the method is that Chebyshev coefficients of the solution are found very easily by using the computer programs. Following similar way, we can find the relations between Chebyshev coefficients, for the functions $\mathrm{f}(\mathrm{x})$ defined in $0 \leq \mathrm{x} \leq 1$ and $0 \leq \mathrm{x}, \mathrm{y} \leq 1$, respectively. The method can be also extended to the polynomial solutions of second order nonlinear differential equations in general form.

REFERENCES

[1] Günhan, B.C., "Approximate solutions of non-linear differential and Integral equations by Chebyshev method", Dissertation, Dokuz Eylül University, (2001).
[2] Keşan, C., "Taylor polynomial solutions of linear differential equations", Appl. Math. Comput., 142: 155-165(2003).
[3] Köroğlu, H., "Chebyshev series solution of linear Fredholm integrodifferential equations", Int. J. Math. Educ. Sci. Technol., 29 (4): 489-500(1998).

[^0]: ^Corresponding author, e-mail: cenk.kesan@deu.edu.tr

