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Abstract
This paper studies the following two non-Newtonian equations with nonlinear boundary
conditions. Firstly, we show that finite time blow up occurs on the boundary and we get
a blow up rate and an estimate for the blow up time of the equation kt = (|kx|r−2 kx)x,
(x, t) ∈ (0, L) × (0, T ) with kx(0, t) = kα(0, t), kx(L, t) = kβ(L, t), t ∈ (0, T ) and initial
function k (x, 0) = k0 (x), x ∈ [0, L] where r ≥ 2, α, β and L are positive constants.
Secondly, we show that finite time blow up occurs on the boundary, and we get blow
up rates and estimates for the blow up time of the equation kt = (|kx|r−2 kx)x + kα,
(x, t) ∈ (0, L) × (0, T ) with kx(0, t) = 0, kx(L, t) = kβ(L, t), t ∈ (0, T ) and initial function
k (x, 0) = k0 (x), x ∈ [0, L] where r ≥ 2, α, β and L are positive constants.
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1. Introduction
The non-Newtonian equations appear in different branches of applied sciences where this

simple model appears in a natural way. Some of them are population dynamics, chemical
reactions, heat transfer. Non-Newtonian equations occupies an important place in applied
mathematics literature. Many mathematicians have been interested in the solutions and
properties of blow up problems with various boundary conditions for many years (see
[1, 4, 6, 8–11]).

In this paper, we consider the following two non-Newtonian equations with two nonlinear
sources to obtain blow up properties extracted from the solutions:

kt = (|kx|r−2 kx)x, (x, t) ∈ (0, L) × (0, T ),
kx (0, t) = kα(0, t), kx (L, t) = kβ(L, t), t ∈ (0, T ),
k (x, 0) = k0 (x) , x ∈ [0, L],

(1.1)

and 
kt = (|kx|r−2 kx)x + kα, (x, t) ∈ (0, L) × (0, T ),
kx (0, t) = 0, kx (L, t) = kβ(L, t), t ∈ (0, T ),
k (x, 0) = k0 (x) , x ∈ [0, L],

(1.2)

where r ≥ 2, α, β, L > 0 and T ∈ (0, ∞). Let k0(x) be a positive initial function satisfying
the compatibility conditions for (1.1) and (1.2).
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The solution of (1.1) and (1.2) blow up if

lim
t→T −

β

sup k(x, t) → ∞,

where Tβ is called the blow up time. Here, we will discuss blow up properties in (1.1) and
(1.2) with the help of two following blow up problems. In [7], Ozalp and Selcuk consider
the problem 

ut = uxx, 0 < x < L, 0 < t < T,
ux (0, t) = uα(0, t), ux (L, t) = uβ(L, t), 0 < t < T,
u (x, 0) = u0 (x) , 0 ≤ x ≤ L,

(1.3)

where α, β are positive constants and T ≤ ∞ and the initial function u0(x) is a non-
negative smooth function. They denote steady state of u by U . They show that u exists
globally if α > β and u0 ≤ U(0) and u blows up in a finite time if β ≥ α, β > 1 and u′′

0 (x) ≥
0 in (0, L). In [5], Lin and Wang consider the problem

ut = uxx + uα(0, t), 0 < x < 1, 0 < t < T,
ux (0, t) = 0, ux (L, t) = uβ(1, t), 0 < t < T,
u (x, 0) = u0 (x) , 0 ≤ x ≤ 1,

(1.4)

where α, β are positive constants and T ≤ ∞ and the initial function u0(x) is a non-
negative smooth function. They show that u exists globally if max(α, β) ≤ 1 and u blows
up in a finite time if max(α, β) > 1 and u′

0 (x) ≥ 0 in (0, 1). In [2], Fu et al. consider the
same problem. Under certain conditions, they prove that the blow up point occurs only at
the boundary. They derive the time asymptotic of solutions near the blow up time with
the help of Giga-Kohn transform ([3]). Further, they prove that the blow up is complete.

So far in literature, the parabolic problem for non-Newtonian equations with two non-
linear sources have been studied for a few. Motivated by the problem [5] and [7], we
discuss these situation in the present paper.

In Section 2, we treat (1.1) where we give an existence result and a blow up criterion.
We show that finite time blow up occurs, and x = L is a single blow up point under
specific conditions. Further, we obtain a blow up rate and an estimate for the blow up
time. In section 3, we give an existence result for (1.2). We show that finite time blow up
occurs and x = L is a single blow up point under specific conditions. Finally, we obtain
blow up rates and estimates for the blow up time.

2. Blow up of (1.1)
In this section, we discuss blow up properties of (1.1). We assume that k′

0 (x) ≥
0 and k′′

0 (x) ≥ 0 in (0, L). These assumptions guarantee that blow up will occur in
finite time.

Remark 2.1. It is easily prove that, if k′
0 (x) ≥ 0 and k′′

0 (x) ≥ 0 in (0, L) then kx, kt > 0 in
[0, L] × (0, T ) by maximum principles.

Now, we rewrite the problem (1.1) into the following form:
kt = S(k)kxx, 0 < x < L, 0 < t < T,
kx (0, t) = kα(0, t), kx (L, t) = kβ(L, t), 0 < t < T,
k (x, 0) = k0 (x) , 0 ≤ x ≤ L,

(2.1)

where S(k) = (r − 1)kr−2
x and kx(x, t) > 0 in (0, L) × (0, T ). Instead of (1.1), we use

(2.1) in this section for convenience.
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Definition 2.2. [7] µ is called an upper solution of the problem (1.3) if µ satisfies the
following conditions:

µt − µxx ≥ 0, 0 < x < L, 0 < t < T,
µx (0, t) ≤ µα(0, t), µx (L, t) ≥ µβ(L, t), 0 < t < T,
µ (x, 0) ≥ u0 (x) , 0 ≤ x ≤ L.

It is a lower solution when the inequalities are reversed.

Lemma 2.3. [7] Let u(x, t, u0) and p(x, t, p0) be solutions of the problem (1.3) with initial
data given by u0(x) and p0(x), respectively. If u0 ≤ p0 then u(x, t, u0) ≤ p(x, t, p0) on
[0, L] × [0, T ).

Corollary 2.4. (i) If we select S(k) ≥ 1 i.e. kx ≥ (r − 1)−1/(r−2) and k0(x) ≤
u0(x), then the solution k of (1.1) is a lower solution of the problem (1.2) from
Definition 2.2 and Lemma 2.3. So, we obtain that k exists globally since α > β,
u0 ≤ U(0) in (1.2), k0(x) ≤ u0(x) and S(k) ≥ 1, i.e. kx ≥ (r − 1)−1/(r−2) in (1.1).

(ii) Similarly, if we select S(k) ≤ 1 i.e. kx ≤ (r−1)−1/(r−2) and u0(x) ≤ k0(x) then the
solution k of (1.1) is an upper solution of the the problem (1.2) from Definition 2.2
and Lemma 2.3. So, we obtain that k blows up in a finite time since u′′

0 (x) ≥ 0 in
(0, L), β ≥ α, β > 1 in (1.2), u0(x) ≤ k0(x) and S(k) ≤ 1 i.e. kx ≤ (r −
1)−1/(r−2) in (1.1).

Theorem 2.5. If β > 1, k′
0 (x) ≥ 0 in (0, L) are satisfied, then the single blow up point is

x = L.

Proof. Let d1 ∈ [0, L), d2 ∈ (d1, L], σ ∈ (0, T ) and ξ > 0. Define an auxiliary function

∆(x, t) = kx − ξ (x − d1) kβ in [d1, d2] × [σ, T ).
Hence, ∆(x, t) satisfies

∆t − (r − 1)kr−2
x ∆xx =

(r − 1)
(
(r − 2)kr−3

x k2
xx + 2ξβkβ−1kr−1

x + ξβ(β − 1) (x − d1) kβ−2kr
x

)
> 0,

in (d1, d2) × [0, T ) where β > 1, r ≥ 2 and kx > 0 which is obtained from Remark 2.1.
Similarly, ∆(x, σ) ≥ 0 for kx > 0 and for sufficient small ε. Also

∆(d1, t) = kx(d1, t) > 0,

∆(d2, t) = kx(d2, t) − ξ (d2 − d1) kβ > 0,

for t ∈ (σ, T ). So, it is easily seen that ∆(x, t) ≥ 0 for (x, t) ∈ [d1, d2] × [0, T ) by the
maximum principle. That is, kx ≥ ξ (x − d1) kβ for (x, t) ∈ [d1, d2] × [σ, T ). Hence, taking
the integral for x from d1 to d2, we have

k(d1, t) ≤
[

ξ(β − 1)(d2 − d1)2

2

] 1
−β+1

< ∞.

So k does not blow up in [0, L). �

Theorem 2.6. If β > 1, k′
0 (x) ≥ 0 and kx(x, 0) ≥ xkβ(x, 0) in (0, L) are satisfied, then

the single blow up point is x = L and L ≤ 1.

Proof. Define an auxiliary function

∆(x, t) = kx − xkβ in [0, L] × [0, T ).
Thus, ∆(x, t) satisfies

∆t − (r − 1)kr−2
x ∆xx = (r − 1)

(
(r − 2)kr−3

x k2
xx + 2βkβ−1kr−1

x + β(β − 1)xkβ−2kr
x

)
≥ 0,
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in (0, L) × (0, T ), where kx > 0 and β, r > 1. Besides, ∆(x, 0) ≥ 0 from kx(x, 0) ≥
xkβ(x, 0) in (0, L) and

∆(0, t) = kα(0, t) > 0,

∆(L, t) = (1 − L)kβ(L, t) ≥ 0,

since L ≤ 1 and t ∈ (0, T ). So, it is easily seen that ∆(x, t) ≥ 0 by the maximum principle,
namely kx ≥ xkβ for (x, t) ∈ [0, L] × [0, T ). Hence, taking the integral for x from x to L,
we have

k(x, t) ≤
[
(β − 1)L2 − x2

2

] 1
−β+1

< ∞.

So k does not blow up in [0, L). �

In the rest of this section, we assume that
kt(L, t) = (r − 1)kr−2

x (L, t)kxx(L, t), 0 < t < T. (2.2)

Theorem 2.7. If β > 1, k′′
0 (x) ≥ 0, k′

0 (x) ≥ 0 and kx(x, 0) ≥ x
Lxkβ(x, 0) in (0, L), then

there exist a positive constant C such that

k(L, t) ≥ C(T − t)1/(2−βr),

for t sufficiently close to T .

Proof. Define an auxiliary function

∆(x, t) = kx(x, t) − x

L
kβ(x, t) in [0, L] × [0, T ).

Thus, ∆(x, t) implies

∆t − (r − 1)kr−2
x ∆xx = (r − 1)

(
(r − 2)kr−3

x k2
xx + 2

L
βkβ−1kr−1

x + x

L
β(β − 1)kβ−1kr

x

)
> 0,

in (0, L) × (0, T ), where kx > 0 and β, r > 1. Besides, ∆(x, 0) ≥ 0 from kx(x, 0) ≥
x
Lkβ

0 (x) in (0, L) and
∆(0, t) = kα(0, t) > 0,

∆(L, t) = 0,

for t ∈ (0, T ). Thus, by the maximum principle, we can see that ∆(x, t) ≥ 0; that is

kx(x, t) ≥ x

L
kβ(x, t).

Therefore,

∆x(L, t) = lim
s→0+

∆(L, t) − ∆(L − s, t)
s

= lim
s→0+

−∆(L − s, t)
s

≤ 0.

We have
∆x(L, t) = kxx − 1

L
kβ − βk2β−1 ≤ 0.

Consequently, using the assumption (2.2),

kxx(L, t) ≤
(1 + βL

L

)
k2β−1,

and we obtain
kt(L, t) ≤

((1 + βL)(r − 1)
L

)
kβr−1.

Taking the integral for t from t to T , we have a blow up rate

k(L, t) ≥ C(T − t)1/(2−βr),
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where C =
[(

(1+βL)(r−1)
L

)
(βr − 2)

]1/(2−βr)
. In addition, we have an upper estimate

k2−βr
0 (L)/(βr − 2) of blow up time. �

3. Blow up of (1.2)
In this section, we discuss blow up properties of (1.2). We assume that k′

0 (x) ≥
0 and

(∣∣∣k′
0(x)

∣∣∣r−2
k

′
0(x)

)
x

+ kα
0 (x) ≥ 0 in (0, L). These assumptions guarantee that blow

up will occur in finite time.

Remark 3.1. It is easily proved that, if k′
0 (x) ≥ 0 and

(∣∣∣k′
0(x)

∣∣∣r−2
k

′
0(x)

)
x

+kα
0 (x) ≥ 0 in

(0, L), then kx, kt > 0 in [0, L] × (0, T ) by the maximum principles.

Now, we rewrite the problem (1.2) into the following form
kt = S(k)kxx + kα, 0 < x < L, 0 < t < T,
kx (0, t) = 0, kx (L, t) = kβ(L, t), 0 < t < T,
k (x, 0) = k0 (x) , 0 ≤ x ≤ L,

(3.1)

where kx(x, t) > 0 in (0, L) × (0, T ), S(k) = (r − 1)kr−2
x . Instead of (1.2), we use (3.1) in

this section for convenience.

Definition 3.2. λ is called a lower solution of problem (1.4) if λ satisfies the following
conditions:

λt − λxx ≤ λα, 0 < x < L, 0 < t < T,
λx (0, t) = 0, λx (1, L) ≤ λβ(L, t), 0 < t < T,
λ (x, 0) ≤ u0 (x) , 0 ≤ x ≤ L.

It is an upper solution when the inequalities are reversed.

Lemma 3.3. Let u be a solution and µ be an upper solution of problem (1.4) in [0, L] ×
[0, T ). Then µ ≥ u in [0, 1] × [0, T ) (See Lemma 2.4 in [5]).

Corollary 3.4. If we select S(k) ≥ 1 i.e. kx ≥ (r−1)−1/(r−2) and k0(x) ≤ u0(x), solution
k of (1.2) is a lower solution of the problem (1.4) from Definition 3.2 and Lemma 3.3.
Then, k exists globally since max(α, β) ≤ 1 in (1.4), S(k) ≥ 1 i.e. kx ≥ (r − 1)−1/(r−2) in
(1.2) and k0(x) ≤ u0(x).

Theorem 3.5. A solution k of (1.2) blows up since max(α, β(r−1)) > 1 and k′
0 (x) ≥ 0 in

(0, L). (See Theorem 2.1 in [5])

Proof. Suppose max(α, β(r − 1)) > 1 and k′
0 (x) ≥ 0 in [0, L] hold. Define an auxiliary

function; M (t) =
∫ L

0 k (x, t) dx, 0 < t < T . Then we have,

M ′ (t) = kβ(r−1) (L, t) +
∫ L

0
kα(x, t)dx ≥ L−β(r−1)Mβ(r−1) +

∫ L

0
kα(x, t)dx,

since kx > 0. If β(r − 1) > 1, then M (t) must blow up in a finite time, that is k (x, t)
must blow up in a finite time. Also, we have

M ′ (t) = kβ(r−1) (L, t) +
∫ L

0
kα(x, t)dx ≥ kβ(r−1) (L, t) + CMα(t),

with the help of the Hölder’s inequality. If α > 1, then M(t) blows up in a finite time,
that is k (x, t) must blow up in a finite time. �

Theorem 3.6. If α > 1 (or β(r − 1) > 1), k′
0 (x) ≥ 0 in (0, L) are satisfies, then the

single blow up point is x = L.
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Proof. Let d1 ∈ [0, L), d2 ∈ (d1, L], σ ∈ (0, T ) and ξ > 0. Define the auxiliary function

∆(x, t) = kx − ξ (x − d1) kα in [d1, d2] × [σ, T ).

Hence, ∆(x, t) satisfies

∆t − (r − 1)kr−2
x ∆xx − αkα−1∆ =

(r − 1)
(
(r − 2)kr−3

x k2
xx + 2ξαkα−1kr−1

x + ξα(α − 1) (x − d1) kα−2kr
x

)
> 0,

in (d1, d2) × [0, T ), where α > 1, r ≥ 2 and kx > 0 which is resulted from Remark 3.1.
Similarly, ∆(x, σ) ≥ 0 from kx > 0, if ε is sufficient small. Also

∆(d1, t) = kx(d1, t) > 0,

∆(d2, t) = kx(d2, t) − ξ (d2 − d1) kα > 0,

for t ∈ (σ, T ). So, it is easily seen that ∆(x, t) ≥ 0 for (x, t) ∈ [d1, d2] × [0, T ) by the
maximum principle. That is, kx ≥ ξ (x − d1) kα for (x, t) ∈ [d1, d2] × [σ, T ). Hence, taking
the integral for x from d1 to d2,we have

k(d1, t) ≤
[

ξ(α − 1)(d2 − d1)2

2

] 1
−α+1

< ∞.

So k does not blow up in [0, L).
If we follow similar process as above and define ∆(x, t) = kx − ξ (x − d1) kβ(r−1) in

[d1, d2] × [σ, T ), we get

k(d1, t) ≤
[

ξ(β(r − 1) − 1)(d2 − d1)2

2

] 1
−β(r−1)+1

< ∞.

So k does not blow up in [0, L). �

In the rest of this section, we assume that

kt(L, t) = (r − 1)kr−2
x (L, t)kxx(L, t) + kα(L, t), 0 < t < T. (3.2)

Theorem 3.7. If β > 1, k′
0 (x) ≥ 0,

(∣∣∣k′
0(x)

∣∣∣r−2
k

′
0(x)

)
x

+ kα
0 (x) ≥ 0 and kx(x, 0) ≥

x
Lxkβ(x, 0) in (0, L) are satisfied, then there exist positive constants C2 and C3 such that

k(L, t) ≥ C2(T − t)1/(2−βr), if α < βr − 1,
k(L, t) ≥ C3(T − t)1/(1−α), if α ≥ βr − 1,

for t sufficiently close to T .

Proof. Define an auxiliary function

∆(x, t) = kx(x, t) − x

L
kβ(x, t) in [0, L] × [0, T ).

Thus, ∆(x, t) implies

∆t − (r − 1)kr−2
x ∆xx − αkα−1∆ =

(r − 1)
(

(r − 2)kr−3
x k2

xx + 2
L

βkβ−1kr−1
x + x

L
β(β − 1)kβ−1kr

x

)
> 0,

in (0, L) × (0, T ), where β > 1, r ≥ 2 and kx > 0. Besides, ∆(x, 0) ≥ 0 from kx(x, 0) ≥
x
Lkβ

0 (x) in (0, L) and

∆(0, t) = kα(0, t) > 0,

∆(L, t) = 0,
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for t ∈ (0, T ). Thus, by the maximum principle, we can see that ∆(x, t) ≥ 0; that is

kx(x, t) ≥ x

L
kβ(x, t).

Therefore

∆x(L, t) = lim
s→0+

∆(L, t) − ∆(L − s, t)
s

= lim
s→0+

−∆(L − s, t)
s

≤ 0.

We have
∆x(L, t) = kxx − 1

L
kβ − βk2β−1 ≤ 0.

Hence, using the assumption (3.2)

kxx(L, t) ≤
(1 + βL

L

)
k2β−1,

and we have
kt(L, t) ≤

((1 + βL)(r − 1)
L

)
kβr−1 + kα.

Taking the integral for t from t to T , we have blow up rates

k(L, t) ≥ C2(T − t)1/(2−βr), if α < βr − 1,
k(L, t) ≥ C3(T − t)1/(1−α), if α ≥ βr − 1,

where

C2 =
[((1 + βL)(r − 1) + L

L

)
(βr − 2)

]1/(2−βr)

and

C3 =
[((1 + βL)(r − 1) + L

L

)
(α − 1)

]1/(1−α)
,

respectively. In addition, we have upper estimates

k2−βr
0 (L)/(βr − 2), if α < βr − 1,
k1−α

0 (L)/(α − 1), if α ≥ βr − 1,

of blow up time. �

4. Conclusions
The main results in (1.1) are the following;

(i) the single blow up point is x = L since β > 1 and k′
0 (x) ≥ 0 in (0, L),

(ii) the single blow up point is x = L and L ≤ 1 since β > 1, k′
0 (x) ≥ 0, k′′

0 (x) ≥
0 and kx(x, 0) ≥ xkβ(x, 0) in (0, L),

(iii) the lower bound of blow up rate is k(L, t) ≥ C(T −t)1/(2−βr) since β > 1, k′
0 (x) ≥ 0,

k′′
0 (x) ≥ 0 and kx(x, 0) ≥ x

Lxkβ(x, 0) in (0, L).
The main results in (1.2) are the following;

(i) the single blow up point is x = L since max(α, β(r − 1)) > 1 and k′
0 (x) ≥ 0 in

(0, L).
(ii) lower bounds of blow up rates are

if α < βr − 1, k(L, t) ≥ C2(T − t)1/(2−βr),

if α ≥ βr − 1, k(L, t) ≥ C3(T − t)1/(1−α),

where k′
0 (x) ≥ 0, k′′

0 (x) ≥ 0 and kx(x, 0) ≥ x
Lxkβ(x, 0) in (0, L).
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