Research Article
BibTex RIS Cite

Farklı endüstriyel uygulamalar için: Dış rotorlu ve düşük devirli asenkron makine tasarımı

Year 2023, Volume: 38 Issue: 4, 2009 - 2024, 12.04.2023
https://doi.org/10.17341/gazimmfd.937127

Abstract

Günümüzde gelişen yeni teknolojilerle birlikte asenkron makinelerin kullanım alanları genişlemektedir. Geleneksel asenkron motor kullanım alanlarına ek olarak, elektrikli taşıtlarda, rüzgar türbinlerinde ve hidroelektrik üretimi gibi alanlarda motor ve generatör olarak kullanımı giderek yaygınlaşmaktadır. Bu çalışmada özellikle rüzgar türbinlerinde direct drive generatör olarak kullanılmak üzere, düşük devirli ve yüksek tork değerli dış rotorlu asenkron makine tasarımı amaçlandı. 16 kutuplu, 50 Hz frekanslı, 375 d/d senkron hızlı, 1kW gücünde dış rotorlu asenkron motor tasarımı, optimizasyonu ve elektromanyetik analizi yapıldı. Analizler için altı farklı model geliştirildi. Stator tasarımlarında tek oyuk tipi ve 72 oyuk, rotor tasarımda 59 oyuk ve üç farklı oyuk tipi kullanıldı. Sincap kafesli rotor için bakır ve alüminyum malzeme tercih edildi. Çalışma Ansys Maxwell elektromanyetik paket programı ile gerçekleştirildi. Önce analitik tasarımı yapılan modellerin, Rmxprt-optimetrics modülü ile en yüksek verim hedeflenerek, temel büyüklükleri, hava aralığı ve oyuk ölçüleri optimize edildi. Daha sonra Sonlu Elemanlar Yöntemi ile elektromanyetik analizleri yapıldı. Analizler sonunda en yakın örnek olarak IEC 60034-30-1 standardında tanımlanan ve IE2 ve IE3 sınıfına üretilen 1.1 kW gücünde 8 kutuplu iç rotorlu asenkron motorların veriminin üstünde bir verim elde edildi. Bu sonuca göre dış rotorlu, düşük devirli ve yüksek torklu asenkron makine üretilebileceği görüldü.

References

  • 1. Bortoni, Edson C., et al., Evaluation of manufacturers strategies to obtain high-efficient induction motors, Sustainable Energy Technol. Assess., 31, 221-227, 2019.
  • 2. Lenin N.C., Padmanaban S., Bhaskar M.S., Mitolo M., Hossain E., Ceiling Fan Drives–Past, Present and Future, IEEE Access, Vol. 9, 44888-44904, 2021.
  • 3. Holik P.J., Dorrell D.G., Popescu M., Performance improvement of an external-rotor split-phase induction motor for low-cost drive applications using external rotor can, IEEE Trans. on magnetics 43 (6), 2549-2551 2007.
  • 4. Shastri S., Sharma U., Singh B., Design of Fractional-Slot Concentrated Winding Consequent Pole Motor for Ceiling Fans, IEEE 5th Int. Conference on Computing Communication and Automation, New Delhi-India, 390-395, 30-31 October, 2020.
  • 5. Mohammed K.G., Ramli A.Q., Analyzing the performance of completed designed outer rotor single phase induction motor, IEEE Student Conference on Research and Developement, Putrajaya-Malaysia, 238-242, 16-17 December, 2013.
  • 6. Popescu M., Dorrell D.G. and Holik P., Improving the Starting Torque in External-Rotor Induction Motors Using an Outer Can, 3rd IET International Conference on Power Electronics, Machines and Drives, Dublin- Ireland, 531-535, 4-6 April, 2006.
  • 7. György T., Biró K.A., Genetic Algorithm based design optimization of a three-phase induction machine with external rotor, 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Side-Turkey, 462-467, 2-4 September 2015.
  • 8. György T., Biró K.Á., Co-evolutionary optimization design of a three-phase induction machine with external rotor, XXII International Conference on Electrical Machines (ICEM), Lausanne-Switzerland, 1394-1398, 4-7 September, 2016.
  • 9. György, T., Biró K.A., Loss Analysis of a Low Power Induction Machine with External Rotor, 6.th International Conference on Modern Power Systems MPS2015, Cluj Napoca-Romania, 117-122, 18-21 May 2015.
  • 10. Virlan B., Benelghali S., Simion A., Livadaru L., Outbib R., Munteanu A., Induction Motor With Outer Rotor and Ring Stator Winding for Multispeed Applications, IEEE Trans. Energy Conver., 28 (4), 999-1007, 2013.
  • 11. Sundaram V.M., Toliyat H. A., A Fractional Slot Concentrated Winding (FSCW) configuration for outer rotor squirrel cage induction motors, IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d'Alene- USA, 20-26, 10-13 May, 2015.
  • 12. Dalal A., Kumar P., Design, Prototyping, and Testing of a Dual-Rotor Motor for Electric Vehicle Application, IEEE Trans. Industrial Electron., 65 (9), 7185-7192, 2018.
  • 13. Cui S., Han S., Chan C.C., Overview of multi-machine drive systems for electric and hybrid electric vehicles, IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing-China, 1-6, 31 August - 3 September, 2014.
  • 14. Wang W., Chen X., Wang J., Motor/Generator Applications in Electrified Vehicle Chassis—A Survey, IEEE Trans. Transp. Electrif., 5 (3), 584-601, 2019.
  • 15. Cha A.H.R., Jeong B.T.W., Im C.D.Y., Shin D.K.J., Seo E.Y.J., Design of outer rotor type induction motor having high power density for in-wheel system, 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo-Japan,1-4, 21-24 October, 2012.
  • 16. Popescu M., Riviere N., Volpe G., Villani M., Fabri G., Leonardo L.D., A Copper Rotor Induction Motor Solution for Electrical Vehicles Traction System, IEEE Energy Conversion Congress and Exposition, Baltimore MD-USA, 3924-3930, September 29-October 3, 2019.
  • 17. Livadaru L., Munteanu A., Simion A., Cantemir C., Design and finite element analysis of high-density torque induction motor for traction applications, 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest-Romania, 211-214, 7-9 May, 2015.
  • 18. Munteanu A., Livadaru L., Simion A., Vîrlan B., Single-tooth winding induction motor with external rotor for electric vehicle applications, International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi-Romania, 209-212, October 20-22, 2016.
  • 19. Hwang M.H., Lee H.S., Yang S.H., Cha H.R., Park S.J., Electromagnetic Field Analysis and Design of an Efficient Outer Rotor Inductor in the Low-Speed Section for Driving Electric Vehicles. Energies, 12 (24), 4615, 2019.
  • 20. Matthew H., Jensen B.B., Induction generators for direct-drive wind turbines, IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls Ontario-Canada,1125-1130, 14-17 May, 2011.
  • 21. Mellah, H., Hemsas K.E., Design and analysis of an external-rotor internal-stator doubly fed induction generator for small wind turbine application by fem, International Journal of Renewable and Sustainable Energy, 2 (1), 1-11, 2013.
  • 22. Hamdi, E. S., Design of small electrical machines. John Wiley & Sons, New York, A.B.D., 1994.
  • 23. Dorrell D. G., The challenges of meeting IE4 efficiency standards for induction and other machines, IEEE International Conference on Industrial Technology (ICIT), Busan-Korea (South), 213-218, 26 Feb.-1 March, 2014.
  • 24. Kimball J. W., Amrhein M., IEEE Machine design considerations for the future energy challenge, Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, Indianapolis-USA, 448-453, 24-26 October, 2005.
  • 25. Popescu M., Analysis and modelling of single-phase induction motor with external rotor for domestic applications. In Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy, Rome Italy, Vol. 1- 463-470, 8-12 October, 2000.
  • 26. Boldea, I., Induction machines handbook, CRC press Taylor & Francis Group, Boca Raton, A.B.D., 2010.
  • 27. Demir U., Aküner M.C., Design and optimization of in-wheel asynchronous motor for electric vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1517-1530, 2018.
  • 28. Purwanto W., Risfendra, Putra D S., Effect of stator slot geometry on high speed spindle motor performance, 2018 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta- Indonesia, 561-565, 6-7 March, 2018.
  • 29. Lipo T.A., Introduction to AC machine design, John Wiley & Sons, New Jersey, A.B.D, 2017.
  • 30. Gundogdu T., Zhu Z. Q., Mipo J. C., Farah P., Influence of air-gap length on rotor bar current waveform of squirrel-cage induction motor. 19th International Conference on Electrical Machines and Systems (ICEMS) IEEE, Chiba-Japan,1-6, 13-16 November, 2016.
  • 31. Joksimović G., Kajević A., Mezzarobba M., Tessarolo, A. Optimal Rotor Bars Number in Four Pole Cage Induction Motor with 36 Stator Slots—Part II: Results, International Conference on Electrical Machines (ICEM) IEEE, Gothenburg-Sweden, Vol. 1-509-514. 23-26 August, 2020.
  • 32. Babypriya B., Gomathi, S., Numerical analysis on impact of choice of number of rotor slots on performance of three phase induction motor, Materials Today: Proceedings (Article in press),1-7, 2020.
  • 33. Chapman, S., Electric machinery fundamentals, McGraw-Hill Education, New York, A.B.D, 2005.
Year 2023, Volume: 38 Issue: 4, 2009 - 2024, 12.04.2023
https://doi.org/10.17341/gazimmfd.937127

Abstract

References

  • 1. Bortoni, Edson C., et al., Evaluation of manufacturers strategies to obtain high-efficient induction motors, Sustainable Energy Technol. Assess., 31, 221-227, 2019.
  • 2. Lenin N.C., Padmanaban S., Bhaskar M.S., Mitolo M., Hossain E., Ceiling Fan Drives–Past, Present and Future, IEEE Access, Vol. 9, 44888-44904, 2021.
  • 3. Holik P.J., Dorrell D.G., Popescu M., Performance improvement of an external-rotor split-phase induction motor for low-cost drive applications using external rotor can, IEEE Trans. on magnetics 43 (6), 2549-2551 2007.
  • 4. Shastri S., Sharma U., Singh B., Design of Fractional-Slot Concentrated Winding Consequent Pole Motor for Ceiling Fans, IEEE 5th Int. Conference on Computing Communication and Automation, New Delhi-India, 390-395, 30-31 October, 2020.
  • 5. Mohammed K.G., Ramli A.Q., Analyzing the performance of completed designed outer rotor single phase induction motor, IEEE Student Conference on Research and Developement, Putrajaya-Malaysia, 238-242, 16-17 December, 2013.
  • 6. Popescu M., Dorrell D.G. and Holik P., Improving the Starting Torque in External-Rotor Induction Motors Using an Outer Can, 3rd IET International Conference on Power Electronics, Machines and Drives, Dublin- Ireland, 531-535, 4-6 April, 2006.
  • 7. György T., Biró K.A., Genetic Algorithm based design optimization of a three-phase induction machine with external rotor, 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Side-Turkey, 462-467, 2-4 September 2015.
  • 8. György T., Biró K.Á., Co-evolutionary optimization design of a three-phase induction machine with external rotor, XXII International Conference on Electrical Machines (ICEM), Lausanne-Switzerland, 1394-1398, 4-7 September, 2016.
  • 9. György, T., Biró K.A., Loss Analysis of a Low Power Induction Machine with External Rotor, 6.th International Conference on Modern Power Systems MPS2015, Cluj Napoca-Romania, 117-122, 18-21 May 2015.
  • 10. Virlan B., Benelghali S., Simion A., Livadaru L., Outbib R., Munteanu A., Induction Motor With Outer Rotor and Ring Stator Winding for Multispeed Applications, IEEE Trans. Energy Conver., 28 (4), 999-1007, 2013.
  • 11. Sundaram V.M., Toliyat H. A., A Fractional Slot Concentrated Winding (FSCW) configuration for outer rotor squirrel cage induction motors, IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d'Alene- USA, 20-26, 10-13 May, 2015.
  • 12. Dalal A., Kumar P., Design, Prototyping, and Testing of a Dual-Rotor Motor for Electric Vehicle Application, IEEE Trans. Industrial Electron., 65 (9), 7185-7192, 2018.
  • 13. Cui S., Han S., Chan C.C., Overview of multi-machine drive systems for electric and hybrid electric vehicles, IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing-China, 1-6, 31 August - 3 September, 2014.
  • 14. Wang W., Chen X., Wang J., Motor/Generator Applications in Electrified Vehicle Chassis—A Survey, IEEE Trans. Transp. Electrif., 5 (3), 584-601, 2019.
  • 15. Cha A.H.R., Jeong B.T.W., Im C.D.Y., Shin D.K.J., Seo E.Y.J., Design of outer rotor type induction motor having high power density for in-wheel system, 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo-Japan,1-4, 21-24 October, 2012.
  • 16. Popescu M., Riviere N., Volpe G., Villani M., Fabri G., Leonardo L.D., A Copper Rotor Induction Motor Solution for Electrical Vehicles Traction System, IEEE Energy Conversion Congress and Exposition, Baltimore MD-USA, 3924-3930, September 29-October 3, 2019.
  • 17. Livadaru L., Munteanu A., Simion A., Cantemir C., Design and finite element analysis of high-density torque induction motor for traction applications, 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest-Romania, 211-214, 7-9 May, 2015.
  • 18. Munteanu A., Livadaru L., Simion A., Vîrlan B., Single-tooth winding induction motor with external rotor for electric vehicle applications, International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi-Romania, 209-212, October 20-22, 2016.
  • 19. Hwang M.H., Lee H.S., Yang S.H., Cha H.R., Park S.J., Electromagnetic Field Analysis and Design of an Efficient Outer Rotor Inductor in the Low-Speed Section for Driving Electric Vehicles. Energies, 12 (24), 4615, 2019.
  • 20. Matthew H., Jensen B.B., Induction generators for direct-drive wind turbines, IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls Ontario-Canada,1125-1130, 14-17 May, 2011.
  • 21. Mellah, H., Hemsas K.E., Design and analysis of an external-rotor internal-stator doubly fed induction generator for small wind turbine application by fem, International Journal of Renewable and Sustainable Energy, 2 (1), 1-11, 2013.
  • 22. Hamdi, E. S., Design of small electrical machines. John Wiley & Sons, New York, A.B.D., 1994.
  • 23. Dorrell D. G., The challenges of meeting IE4 efficiency standards for induction and other machines, IEEE International Conference on Industrial Technology (ICIT), Busan-Korea (South), 213-218, 26 Feb.-1 March, 2014.
  • 24. Kimball J. W., Amrhein M., IEEE Machine design considerations for the future energy challenge, Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, Indianapolis-USA, 448-453, 24-26 October, 2005.
  • 25. Popescu M., Analysis and modelling of single-phase induction motor with external rotor for domestic applications. In Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy, Rome Italy, Vol. 1- 463-470, 8-12 October, 2000.
  • 26. Boldea, I., Induction machines handbook, CRC press Taylor & Francis Group, Boca Raton, A.B.D., 2010.
  • 27. Demir U., Aküner M.C., Design and optimization of in-wheel asynchronous motor for electric vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1517-1530, 2018.
  • 28. Purwanto W., Risfendra, Putra D S., Effect of stator slot geometry on high speed spindle motor performance, 2018 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta- Indonesia, 561-565, 6-7 March, 2018.
  • 29. Lipo T.A., Introduction to AC machine design, John Wiley & Sons, New Jersey, A.B.D, 2017.
  • 30. Gundogdu T., Zhu Z. Q., Mipo J. C., Farah P., Influence of air-gap length on rotor bar current waveform of squirrel-cage induction motor. 19th International Conference on Electrical Machines and Systems (ICEMS) IEEE, Chiba-Japan,1-6, 13-16 November, 2016.
  • 31. Joksimović G., Kajević A., Mezzarobba M., Tessarolo, A. Optimal Rotor Bars Number in Four Pole Cage Induction Motor with 36 Stator Slots—Part II: Results, International Conference on Electrical Machines (ICEM) IEEE, Gothenburg-Sweden, Vol. 1-509-514. 23-26 August, 2020.
  • 32. Babypriya B., Gomathi, S., Numerical analysis on impact of choice of number of rotor slots on performance of three phase induction motor, Materials Today: Proceedings (Article in press),1-7, 2020.
  • 33. Chapman, S., Electric machinery fundamentals, McGraw-Hill Education, New York, A.B.D, 2005.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hakan Çelik 0000-0003-3895-7054

Numan Sabit Çetin 0000-0002-4040-7097

Publication Date April 12, 2023
Submission Date May 14, 2021
Acceptance Date September 25, 2022
Published in Issue Year 2023 Volume: 38 Issue: 4

Cite

APA Çelik, H., & Çetin, N. S. (2023). Farklı endüstriyel uygulamalar için: Dış rotorlu ve düşük devirli asenkron makine tasarımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2009-2024. https://doi.org/10.17341/gazimmfd.937127
AMA Çelik H, Çetin NS. Farklı endüstriyel uygulamalar için: Dış rotorlu ve düşük devirli asenkron makine tasarımı. GUMMFD. April 2023;38(4):2009-2024. doi:10.17341/gazimmfd.937127
Chicago Çelik, Hakan, and Numan Sabit Çetin. “Farklı endüstriyel Uygulamalar için: Dış Rotorlu Ve düşük Devirli Asenkron Makine tasarımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 4 (April 2023): 2009-24. https://doi.org/10.17341/gazimmfd.937127.
EndNote Çelik H, Çetin NS (April 1, 2023) Farklı endüstriyel uygulamalar için: Dış rotorlu ve düşük devirli asenkron makine tasarımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 4 2009–2024.
IEEE H. Çelik and N. S. Çetin, “Farklı endüstriyel uygulamalar için: Dış rotorlu ve düşük devirli asenkron makine tasarımı”, GUMMFD, vol. 38, no. 4, pp. 2009–2024, 2023, doi: 10.17341/gazimmfd.937127.
ISNAD Çelik, Hakan - Çetin, Numan Sabit. “Farklı endüstriyel Uygulamalar için: Dış Rotorlu Ve düşük Devirli Asenkron Makine tasarımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/4 (April 2023), 2009-2024. https://doi.org/10.17341/gazimmfd.937127.
JAMA Çelik H, Çetin NS. Farklı endüstriyel uygulamalar için: Dış rotorlu ve düşük devirli asenkron makine tasarımı. GUMMFD. 2023;38:2009–2024.
MLA Çelik, Hakan and Numan Sabit Çetin. “Farklı endüstriyel Uygulamalar için: Dış Rotorlu Ve düşük Devirli Asenkron Makine tasarımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 4, 2023, pp. 2009-24, doi:10.17341/gazimmfd.937127.
Vancouver Çelik H, Çetin NS. Farklı endüstriyel uygulamalar için: Dış rotorlu ve düşük devirli asenkron makine tasarımı. GUMMFD. 2023;38(4):2009-24.