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ABSTRACT 

 

In this paper, we extend the Compact Genetic Algorithm (CGA) for real-valued optimization problems by dividing the total search 

process into three stages. In the first stage, an initial vector of probabilities is generated. The initial vector contains the 

probabilities of bits having 1 depending on the bit locations as defined in the IEEE-754 standard. In the second stage, a CGA 

search is applied on the objective function using the same encoding scheme. In the last stage, a local search is applied using the 

result obtained by the previous stage as the starting point. A simulation study is performed on a set of well-known test functions 

to measure the performance differences. Simulation results show that the improvement in search capabilities is significant for 

many test functions in many dimensions and different levels of difficulty. 

Keywords: Optimization, Genetic Algorithms, Evolutionary Optimization, Simulations 

http://www.alphanumericjournal.com/
http://alphanumericjournal.com/type/research-article/
http://orcid.org/0000-0002-9402-1982
http://orcid.org/0000-0001-6817-0127


Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 44 

 

 
 

Alphanumeric Journal 
Volume 8, Issue 1, 2020 

 

1. Introduction 

Genetic Algorithms (GAs) are search and optimization techniques that mimic the 
natural selection and principals of genetics (Holand, 1975; Goldberg and Holland, 
1988; Sastry, 2014). In GAs, a population of random solutions are generated and 
assigned to fitness values. A fitness value is a measure of the quality of a candidate 
solution. Well known genetic operators such as crossover and mutation are applied 
on the selected candidate solutions which have higher fitness values to generate new 
population members called offspring. After many steps, it is expected that the 
generated population will have higher average fitness than the one generated in 
former iterations (Goldberg, 1989). 

Estimation of Distribution Algorithms (EDAs) form another family of GAs in which a 
vector of probabilities are used to generate candidate solutions by sampling rather 
than a population of candidate solutions (Pelikan et al., 2015). PBIL (Population-
based incremental learning) is an earlier member of EDAs that consists on creating a 
population of candidate solutions by sampling and updating the vector of 
probabilities using some best solutions (Baluja, 1994). A vector of probabilities is 
initially created as [0.5 0.5 . . . 0.5]. 𝑖th element of the vector represents the probability 
of 𝑃(𝑏𝑖 = 1) where 𝑏𝑖  is the 𝑖th bit of the candidate solution, 𝑖 = 1,2, . . . , 𝑙, and 𝑙 is the 
number of elements. The best 𝑛𝑣 solutions are selected from the population of size 
𝑛 to update the vector of probabilities. The aim of the update process is to increase 
or decrease the probabilities towards to best solutions for generating better 
solutions in following iterations. After many steps, it is expected that the elements 
of the probability vector approach to either zero or one. The final solution is a bit 
string which is considered as the optimum. 

Compact Genetic Algorithms (CGAs) are the other branch of the EDA family (Harik et 
al., 1999). CGAs are compact as they are not based on a population and require less 
computer memory to run. This property of CGAs makes the hardware implementation 
possible in devices with low resources (Aporntewan and Chongstitvatana, 2001). In 
each step of the algorithm, two candidate solutions are sampled using the vector of 
probabilities. Depending the fitness values, the best candidate solution is labeled as 
the winner. If 𝑖th gene of the winner is 1, then the 𝑖th element of the probability vector 
is moved towards to 1 with the amount of 

1

popsize
 where 𝑖 = 1,2, . . . , 𝑛, 𝑛 is the 

chromosome length, and popsize is the population size. If the 𝑖th gene of the winner 
is 0, then the amount of mutation is negative, that is, the 𝑖th element of the 
probability vector is moved downwards to 0. These operations are repeated until all 
of the elements of the probability vector are either 0s or 1s. If the popsize parameter 
is large then the amount of mutation is low, that is, more computation time is needed 
to get a fully converged probability vector. When the popsize is small, then the 
changing steps are large, convergence rate is high but the result is generally a local 
optimum because the search space is not well explored. Since the parameters of the 
crossover probability, mutation probability, population size, number of generations, 
and crossover and mutation types are not needed, CGAs are parameterless. The 
popsize parameter is only about the mutation of probability elements and it is not 
really defines the number of candidate solution as in GAs. 

Classical GAs and CGAs represent the search space using bits. Addition to this, both 
GAs and CGAs are extended to use other types of encoding systems such as integer 
encoding, floating-point or real-valued encoding, permutation encoding, machine-
coding, etc. PBIL and CGA are mainly developed for the binary encoding of variables. 
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Since it is possible to encode real values as bits, these algorithms can also be applied 
on the real valued optimization problems. Besides this, some new sampling schemes 
are based on sampling values using some probability distributions and mutating the 
distribution parameters during iterations (Sebag and Ducoulombier, 1998; Mininno 
et al., 2008). 

In this paper, we devise a new CGA based algorithm for the real valued optimization 
problems. The encoding of variables is based on binary encoding but the IEEE-754 
transformation is used to separate the sign, the exponent, and the mantissa parts of 
a real value as stored in computer memory. The algorithm starts with an adjusted 
probability vector. The adjusted vector is the vector of probabilities in which the 
corresponding elements represent the probability of bits having value of 1 depending 
on the locations of bits in the IEEE-754 standard. After obtaining the adjusted vector, 
the usual CGA search is performed. Finally, a local search is applied to obtain more 
precise solutions. 

In Section 2, we present the algorithm in great detail. In Section 3, an example is given 
to demonstrate results of the each phase applied on a well known test function. In 
Section 4, we perform a simulation study to measure the performance differences 
between the original and the extended algorithms. Finally, in Section 5, we conclude. 

2. The Algorithm 

The extended algorithm is mainly based on three steps. In first step, an initial vector 
of probabilities is generated using the IEEE-754 encoded bits of variables. The initial 
vector of probabilities does not necessarily have 0.5 in each elements. In the second 
step, a CGA search is performed using the same encoding scheme of real values. In 
the last step, a local search is applied to obtain more precise solutions. These steps 
are defined in Section 2.1, Section 2.2, and Section 2.3. 

2.1. Encoding of variables 

Digital computers store and represent the data using bits. Since bits are numbers in 
base 2, it is straightforward to express integer numbers by combining many bits. 
Representing rational numbers is also possible using a finite number of bits. 
However, representation of real or irrational numbers requires a discretization 
process (Goldberg, 1991). Emphasizes that success of a GA search is related to the 
building blocks represented by bits as proved in Schemata theorem. Since there is not 
a distinction between phenotype and genotype of variables, real valued GAs are 
blocked in later iterations. 

IEEE-754 is a standard for encoding and decoding real numbers using fixed number 
of bits in computer memory (IEEE, 2008). In this standard, bits of a 32-bit floating 
number is divided into three parts. The first part is 1 bit length and defines the sign 
of the number. The following 8 bits form the exponent part and the remaining 23 bits 
form the mantissa. Finally a 32 bit floating-point number is defined as 

   (−1)𝑠𝑖𝑔𝑛 × 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 × 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 

where 𝑠𝑖𝑔𝑛 is zero if the number is positive. Table 1 shows an example of how the bit 
representation is changed when a single digit is changed. Since there are 232 possible 
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representations, the first bit divides the total number of possibilities by 2. It is also 
shown that the exponent part remains same when a small change is occurred in the 
number in some cases. In contrast, the numbers 12345.6789 and 02345.6789 have 
several differences in both exponent and mantissa parts even they differ in a single 
digit. Consequently, numbers sampled in a predefined range have some patterns in 
both sign, exponent, and mantissa parts. 

Using machine based transformations as the encoding scheme is not new in 
evolutionary optimization context. Budin et al., (2010) used the 64-bits version of the 
IEEE-754 standard in GA search. It is shown that the machine based encoding scheme 
outperforms the classical binary encoding. Ojha et al. (2012) trained a neural network 
using a GA search with the variables encoded by 32-bits IEEE-754 standard. Umbarkar 
et al. (2015) developed a software based GA that uses the IEEE-754 standard for the 
encoding scheme. Similarly, Satman (2013) suggested using the byte representation 
of double precision real values and showed that the byte based encoding outperforms 
the real-valued encoding scheme in many cases (Satman and Akadal, 2017) 

Number Sign Exponent Mantissa 

-12345.6789 1 10001100 10000001110011010110111 

12345.6789 0 10001100 10000001110011010110111 

12344.6789 0 10001100 10000001110001010110111 

12335.6789 0 10001100 10000001011111010110111 

12245.6789 0 10001100 01111110101011010110111 

11345.6789 0 10001100 01100010100011010110111 

02345.6789 0 10001010 00100101001101011011101 

12345.6788 0 10001100 10000001110011010110111 

12345.6779 0 10001100 10000001110011010110110 

12345.6689 0 10001100 10000001110011010101101 

12345.5789 0 10001100 10000001110011001010001 

10000.0000 0 10001100 00111000100000000000000 

Table 1. IEEE-754 representation of some 32-bit floating-point numbers 

Suppose the single variable function 𝑦 = 𝑓(𝑥) has an extremum at 𝑥 = 𝑥0 where 
−50 ≤ 𝑥 ≤ 50. Let 𝑆𝑖 is the IEEE-754 encoded bit string of the 𝑖th floating-point 
number in the defined range, 𝑖 = 1,2, . . . , 𝑚, and 𝑚 is the total number of floating-
point numbers. Then the probability of the sign bit having the value of 1 is 50% 
because half of the values lies above the zero. The interesting part is the exponent as 
the values in the predefined range possibly have 1s in the first bit whereas the second 
bit is generally zero. Note that in the mantissa part, most of the bits can be either 0s 
or 1s with the probability of 50% except the first one since the probability of first bit 
having 1 is 36%. The probability vector of the exponent part is given in Table 2. 

1 2 3 4 5 6 7 8 

0.96 0.04 0.04 0.04 0.04 0.04 0.51 0.43 

Table 2. 𝑃(𝑏𝑖𝑗 = 1) in exponent parts of −50 ≤ 𝑥 ≤ 50 

In CGAs, initial elements of the probability vector are both set to 0.5. As it is 
mentioned before, this assumption is not really needed and the some parts of the 
search space is not needed to be explored. Addition to this, some bits can be either 0 
or 1, however the probabilities of having 0 or 1 are not equal in some cases. In the first 
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part of the devised algorithm, the adjusted probability vector is generated before the 
genetic search in order to prevent moving around the unnecessary parts of the search 
space. When the range of the variable 𝑥 is defined as −∞ < 𝑥 < ∞ then all of the 
elements of the probability vector are 0.5. In this special case, the proposed algorithm 
does not start with an initial probability generating process. 

2.2. Generating initial probability vector 

As mentioned in Section 2.1, the proposed algorithm is based on the IEEE-754 
transformation on the real values of 32 bits. Since any bits of an real value can be 1 
with probability of 

1

2
 in a range of −∞ < 𝑥 < ∞, probabilities for some bits can be 

different in a more narrowed range. For instance, 𝑃(𝑏1 = 0) is always zero for the 
range of 10 ≤ 𝑥 ≤ 100 whereas 𝑃(𝑏1 = 1) is 1 for any range with both elements are 
negative, where 𝑏𝑖  is the 𝑖th bit of the IEEE-754 representation. 

The proposed algorithm estimates the probability vector by generating the empirical 
probabilities of having 𝑃(𝑏𝑖 = 1). Algorithm 2.2 shows the whole process for a single 
variable using a pseudo-code. The process can be repeated for the other variables in 
the multivariate case. The algorithm generates a probability vector of size 32 for a 
single real variable. If the bounds of the variable is defined as [𝑚𝑖𝑛𝑣𝑎𝑙, 𝑚𝑎𝑥𝑣𝑎𝑙], B 
samples are sampled using a Uniform distribution with parameters minval and 
maxval. The encode() function gets a real number as argument and returns the IEEE-
754 representation. In the iteration 𝑖, the bit vector is appended at the 𝑖th row of the 
result matrix. Finally, the column means of the matrix is returned. The parameter B 
can be selected manually. In Section 4, we selected the value of 105 for the B 
parameter. 

 
Algoritm 1. Generating Initial Probability Vector For a Single Variable 

2.3. The hybrid compact genetic search 

The devised method performs a genetic search using the algorithm given in Algorithm 
2.3. The algorithm uses a vector of probabilities generated using the Algorithm 2.2. 
In each step, two candidate solutions are sampled using the probabilities. Assuming 
the goal function is subject to be minimized, the winner is the candidate chromosome 
with lower cost value. These parts of the genetic search are almost same with the 
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CGAs expect the decode() part. decode() receives 𝑝 × 32 bits as input and returns a 
vector of 𝑝 real values which are decoded using the IEEE-754 transformation. 

 
 

 
Algorithm 2. Machine Coded Compact Genetic Algorithm 

Note that the function decode() uses the single precision version of IEEE-754 which 
spans 32 bits in the computer memory. The double precision version of the 
specification represents a wider range of numbers as it spans 64 bits. However, 
working with longer bit strings reduces the performance drastically. 

In GAs, and generally in some evolutionary optimization algorithms, genetic operators 
perform the search by Exploration and Exploitation (Chen et al., 2009). After 
performing a genetic operator, a new solution can be created in a different location 
of the search space which covers the global optimum. On the other hand, the newly 
generated solution can fall a location close to the global optimum which is generated 
using two best solutions in the population. Shortly, the processes of searching the 
new areas and performing local fine-tuning are executed in parallel. The balance 
between these two vital tasks must be calibrated. 

In some cases, a genetic search can terminate by reporting a good solution which is 
not the global optimum because of lack of a lucky mutation or crossover operation or 
overshooting due to wrongly selected adaptive probabilities. In other words, a GA 
search can find a nice solution around the global optimum and a local fine-tuning 
operation may be required for finding the ideal solution. 
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Hybridization of search algorithms is applied in several ways by combining at least 
two optimization algorithms. Gonçalves et al. (2015) improved the result obtained by 
a genetic algorithm using a local search optimization tool to prevent getting stuck on 
a local optimum. Kim et al (2007) combined a genetic algorithm with a particle swarm 
optimization tool in the run-time for searching the global optimum of multimodal 
functions. Arakaki and Usberti (2018) and Usberti et al. (2018) used a hybridization 
method based on the statistical filtering. Satman and Akadal (2016) applied ARIMA 
forecasting to predict offspring using the historical chromosome data of parents in 
earlier generations as a hybridization tool. Liu et al. (2018),Long and Wu (2014), Kang 
et al. (2011) and Satman (2015) hybridized many evolutionary optimization 
algorithms with the Hooke and Jeeves local optimizer for improving the quality and 
the precision of the solutions. 

Hooke and Jeeves algorithm is a local search optimizer for optimization problems 
which are not necessarily differentiable. Algorithm starts searching using an initial 
solution. This initial search is modified in all directions by a predefined step size 
parameter. Successful moves are stored and the search is repeated while the 
decreased step size is not zero. The final solution is reported as the optimum (Hooke 
and Jeeves, 1961; Moser 2009). 

In our proposed method, we apply a Hooke and Jeeves local search for improving the 
result obtain by the CGA defined in Algorithm 2.3. The whole algorithm is given in 
Algorithm 2.3. 

 
Algorithm 3. Machine Coded Compact Genetic Algorithm with Hybridization 

The algorithm given in Algorithm 2.3 is mainly based on three steps. The 𝑛 −variable 
objective function defined as 𝑓: ℛ𝑛 → ℛ is transformed using the IEEE-754 standard 
and redefined as 𝑓𝑏: ℬ𝑛×32 → ℛ where ℬ is the binary space. In the first stage defined 
in Algorithm 2.2, the initial vector of probabilities is generated. Depending on the 
range of the variables, some probabilities in this vector equal to 0, 1, or any value 
within the range. If the corresponding probability is either zero or one, the search 
space is divided and the remaining effort is performed on the other elements of the 
vector. The final probabilities are then used in the MCCGA (Machine-coded Compact 
Genetic Algorithm) stage given in the Algorithm 2.3. This stage is almost as same 
with the original CGA algorithm except the initial vector of probabilities and the 
decoder function. In this stage, the vector of probabilities is used for generating new 
chromosomes by sampling. The decoder is applied to evaluate the objective function 
𝑓𝑏 using the binary representation standard. After all of the probability elements are 
converged to either 0s or 1s, the stage is terminated. The final 𝑛 × 32 bits are decoded 
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into the real values and a Hooke and Jeeves search is started. The reported solution 
is expected to be the global optimum. 

3. An Example 

The Chichinadze function is defined as  

 𝑓(𝑥, 𝑦) = 𝑥2 − 12𝑥 + 11 + 10cos(𝜋𝑥/2) + 8sin(5𝜋𝑥) −
1

√5
𝑒−0.5(𝑦−0.5)2

 

 for −30 ≤ 𝑥, 𝑦 ≤ 30 and 𝑓∗ = −43.3159 is the global minimum at 𝑥 = 5.90133 and 𝑦 =

0.5. The graphics of the function in a narrower range is shown in Figure 1. 

 
Figure 1. Chichinadze function 

The classical CGA search with the initial vector of probabilities  

 [0.5 0.5 . . . 0.5] 

reports the solution as 𝑥 = −0.0949707, 𝑦 = 0.4999996, and 𝑓𝜙 = 13.61534 which is 
far from the global minimum. The popSize parameter is selected as 200. 

Since the selected range is a considerably small zone of the whole floating-point 
representation space, some bits of the encoded variables tend to take the value of 
either 0 or 1 with higher probabilities. Figure 2 shows the probabilities 𝑃(𝑏𝑖 = 1) of 
IEEE-754 encoding of −30 ≤ 𝑥 ≤ 30. It is shown in Figure 2 that the 𝑃(𝑏𝑖 = 1) for 𝑖 =

3,4,5,6,7 are under 0.2, whereas, the probabilities are above 0.6 for 𝑖 = 2,8,9. As the 
range is symmetric around zero, 𝑃(𝑏1 = 1) is calculated exactly as 0.5. 𝑃(𝑏𝑖 = 1) for 
𝑖 = 10,11,12 are under 0.5 but the differences are negligible. A CGA search with the 
generated initial vector reports the solution as 𝑥 = 5.90625, 𝑦 = 0.465660, and 𝑓𝜓 =

−43.23912 which is closer to the global minimum. Despite the solution reported by 
the algorithm is satisfactory, the search capabilities can be improved. The reported 
solution is a good initial point for Hooke-Jeeves algorithm. After applying the local 
search process using the CGA based solution as the initial solution, we obtain the final 
solution as 𝑥 = 5.901329, 𝑦 = 0.500000, and 𝑓𝜁 = −43.31586. 
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Figure 2. 𝑃(𝑏𝑖 = 1) of IEEE-754 encoding for −30 ≤ 𝑥 ≤ 30 

4. Simulations 

We perform a simulation study to compare the search capabilities of CGA and the 
developed algorithm. We use a suit of test functions reported in (Mishra, 2006). This 
set of test functions is used to measure the performance differences of well-known 
optimization techniques in the literature. The simulations are repeated 1000 times 
for each configuration. Since the popSize parameter affects the performance, it is 
selected as 10, 20, 50, 100, and 200. For the subset of functions defined for 𝑚 ≥ 2 
variables, simulations are performed for 𝑚 = 2, 𝑚 = 10, and 𝑚 = 25. Simulation 
results for 𝑚 = 2 are reported in Table 3-6. 

The table columns represents the value of popSize parameter, arithmetic means and 
standard deviations of reported objective values by algorithms, and p-values. We 
applied a 2-sample Wilcoxon Test (Mann-Whitney) for independent samples to test 
equality of location parameters of two populations. Small p-values indicate that we 
can safely reject the null-hypothesis of 𝐻0: 𝜇1 = 𝜇2 in contrast to 𝐻𝑎: 𝜇1 ≠ 𝜇2 where 𝜇1 
and 𝜇2 are location parameters of distributions related to the corresponding objective 
values. NA values are generated when the algorithms produce exaclty the same 
results and NAs can be interpreted as the p-value of 1. It is shown in Tables 3-6 that 
almost all of the p-values are small and this can be accepted as a general evidence for 
performance inequality of these methods. CGA outperforms the developed algorithm 
for Cross leg table, Modified Schaffer #1, Modified Schaffer #2, Schaffer, and 
Griewank functions. The two method performs nearly same for Crowned cross, Tree 
humps camel back, Ackley, Bohacevsky, Holzman, Hyperellipsoid, Maxmod, Multimod, 
Rastrigin, Sphere, and Sumsquares functions despite the reported p-values indicate 
the evidence of inequality of the performances. The developed algorithm 
outperforms the CGA for Test tube holder, Holder table, Carrom table, Cross in tray, 
Cross, Pen holder, Bird, Modified Schaffer #3, Egg holder, Chichinadze, McCormick, 
Levy, Styblinski tang, Bukin, Leon, Giunta, Rosenbrock, and Schwefel functions. As the 
value of popSize parameter increases the performance also increases but the 
difference is more apparent for the developed algorithm. Interestingly in some 
functions, for example Bird function, average performance is decreased as the 
popSize is increased but the standard deviation is also increased. That means the 
performance is badly affected and includes fluctuations but it reports solutions that 
close to the global optimum in some iterations. This exception also designates that 
increasing the popSize does not necessarily mean having a better solution reported 
after choosing an unlucky random seed. 
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Table 7-9 summarize the simulation reports for higher dimensions. The developed 
algorithm have better or equal performance than the CGA except Sine envelope, 
Maxmod, and Schaffer functions. Both of the methods fail to obtain a good solution 
in average for Schwefel function. It is also shown in results that an increase on 
popSize generally increases the quality of solutions with smaller standard deviations. 
But the increase in the average quality is steeper in the CGA especially for higher 
dimensions 

Function Population Size Mean of CGA 
Mean of 
MCCGA 

Std. Dev. Of CGA 
Std. Dev. Of 
MCCGA 

P-value 

TestTubeHolder  
(-10.8723) 

10 0 -7.101 0 2.506 0 
20 
50 
100 

-5.303 
-5.61 
-5.92 

-7.415 
-8.813 
-9.518 

0.855 
1.45 
1.834 

2.600 
2.421 
1.965 

0 
0 
0 

200 -6.663 -9.73 2.36 1.693 0 

HolderTable  
(-26.92) 

10 -2.718 -20.485 0 8.702 0 
20 
50 
100 

-18.276 
-20.217 
-21.408 

-22.677 
-24.796 
-25.053 

7.454 
6.356 
5.236 

7.646 
5.706 
5.39 

0 
0 
0 

200 -22.155 -25.736 4.236 4.408 0 

CarromTable  
(-24.15682) 

10 -0.246 -15.748 0 10.422 0 
20 
50 
100 

-13.02 
-15.045 
-16.104 

-20.097 
-21.672 
-22.646 

7.587 
6.423 
5.427 

8.319 
6.737 
5.341 

0 
0 
0 

200 -16.995 -23.156 4.258 4.433 0 

CrossInTray  
(-2.062612) 

10 0 -1.483 0 0.311 0 
20 
50 
100 

-0.937 
-1.043 
-1.1 

-1.377 
-1.318 
-1.297 

0.517 
0.444 
0.388 

0.26 
0.203 
0.172 

0 
0 
0 

200 -1.186 -1.281 0.257 0.148 0 

CrownedCross  
(0) 

10 0 0 0 0.005 0 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0.32 
NA 

200 0 0 0 0 NA 

Cross  
(0) 

10 1 0 0 0 0 
20 
50 
100 

0.017 
0.008 
0.006 

0 
0 
0 

0.057 
0.038 
0.039 

0 
0 
0 

0 
0 
0 

200 0.004 0 0.029 0 0 

CrossLegTable 
(-1) 

10 -1 -0.996 0 0.054 0 
20 
50 
100 

-1 
-1 
-1 

-0.999 
-1 
-1 

0 
0 
0 

0.018 
0 
0 

0 
0.32 
NA 

200 -1 -1 0 0 NA 

PenHolder  
(-0.96354) 

10 -0.692 -0.933 0 0.055 0 
20 
50 
100 

0 
0 
0 

-0.95 
-0.956 
-0.958 

0 
0 
0 

0.029 
0.022 
0.019 

0 
0 
0 

200 0 -0.96 0 0.015 0 

Bird 
(-106.7645) 

10 2.718 -100.463 0 19.278 0 
20 
50 
100 

2.205 
1.872 
1.683 

-94.018 
-77.442 
-56.877 

0.343 
0.345 
0.251 

28.071 
41.14 
47.658 

0 
0 
0 

200 1.586 -37.239 0.145 47.332 0 

ModifiedSchaffer1  
(0) 

10 0 0.29 0 0.219 0 
20 
50 
100 

0 
0 
0 

0.307 
0.251 
0.193 

0 
0 
0 

0.215 
0.22 
0.213 

0 
0 
0 

200 0 0.092 0 0.167 0 

ModifiedSchaffer2  
(0) 

10 0 0.298 0 0.222 0 
20 
50 
100 

0 
0 
0 

0.322 
0.267 
0.195 

0 
0 
0 

0.211 
0.216 
0.215 

0 
0 
0 

200 0 0.113 0 0.182 0 

Table 3. Simulation results for 𝑝 = 2 
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Function 
Population 
Size 

Mean of 
CGA 

Mean of 
MCCGA 

Std. Dev. of 
CGA 

Std. Dev. of 
MCCGA 

P-value 

Modified 
Schaffer3 (0.00156685) 

10 
20 
50 
100 
200 

0.708 
0.436 
0.311 
0.171 
0.051 

0.261 
0.189 
0.073 
0.018 
0.007 

0 
0.153 
0.22 
0.21 
0.115 

0.214 
0.206 
0.143 
0.061 
0.014 

0 
0 
0 
0 
0 

Modified 
Schaffer4  
(0.292579) 

10 1 0.468 0 0.066 0 
20 
50 
100 

0.497 
0.496 
0.497 

0.484 
0.494 
0.497 

0.029 
0.032 
0.029 

0.048 
0.03 
0.021 

0 
0 
0 

200 0.498 0.498 0.024 0.014 0 

EggHolder  
(-959.64) 

10 -25.46 -562.187 0 223.319 0 
20 
50 
100 

127.575 
139.999 
112.034 

-652.474 
-691.437 
-732.816 

431.326 
418.092 
374.64 

207.335 
196.009 
180.738 

0 
0 
0 

200 103.389 -771.031 350.95 164.206 0 

Chichinadze  
(-43.3159) 

10 20.605 -34.038 0 7.826 0 
20 
50 
100 

15.953 
14.591 
14.122 

-36.68 
-39.147 
-40.627 

6.575 
4.539 
1.859 

6.976 
5.947 
5.058 

0 
0 
0 

200 13.795 -41.718 1.016 4.113 0 

McCormick  
(-1.9133) 

10 1 -1.913 0 0 0 
20 
50 
100 

-0.571 
-1.363 
-1.567 

-1.913 
-1.913 
-1.913 

1.134 
0.615 
0.248 

0 
0 
0 

0 
0 
0 

200 -1.66 -1.913 0.166 0 0 

Levy  
(0) 

10 2 0.003 0 0.022 0 
20 
50 
100 

1.625 
1.211 
0.816 

0.001 
0.003 
0.006 

0.459 
0.632 
0.674 

0.008 
0.016 
0.025 

0 
0 
0 

200 0.526 0.009 0.664 0.03 0 

ThreeHumps 
CamelBack  
(0) 

10 0 0 0 0.009 0 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

200 0 0 0 0 0.74 

Zettle 
(-0.003791) 

10 0 -0.004 0 0 0 
20 
50 
100 

-0.002 
-0.002 
-0.002 

-0.004 
-0.004 
-0.004 

0.001 
0.001 
0.001 

0 
0 
0 

0 
0 
0 

200 -0.002 -0.004 0.001 0 0 

StyblinskiTang  
(-78.332) 

10 0 -77.159 0 4.15 0 
20 
50 
100 

-28.501 
-49.807 
-56.95 

-78.233 
-78.332 
-78.332 

14.975 
12.004 
04.01.1900 

1.179 
0 
0 

0 
0 
0 

200 -57.997 -78.332 0.075 0 0 

Bukin 
(-124.75) 

10 75.25 -124.75 0 0 0 
20 
50 
100 

141.262 
100.604 
75.744 

-124.75 
-124.75 
-124.75 

361.617 
323.891 
297.064 

0 
0 
0 

0 
0 
0 

200 55.893 -124.75 271.1 0 0 

Table 4. Simulation results for p=2 (Continued) 
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Function Population Size Mean of CGA Mean of MCCGA Std. Dev. Of CGA 
Std. Dev. Of 
MCCGA 

P-value 

Leon  
(0) 

10 1 0 0 0 0 
20 
50 
100 

0.91 
0.828 
0.807 

0 
0 
0 

0.099 
0.084 
0.066 

0 
0 
0 

0 
0 
0 

200 0.789 0 0.038 0 0 

Giunta 
(0.06447047) 

10 0.363 0.088 0 0.055 0 
20 
50 
100 

0.251 
0.151 
0.104 

0.072 
0.065 
0.064 

0.081 
0.08 
0.057 

0.033 
0.01 
0 

0 
0 
0 

200 0.076 0.064 0.031 0 0 

Schaffer  
(0) 

10 0 0.315 0 0.217 0 
20 
50 
100 

0 
0 
0 

0.341 
0.302 
0.253 

0 
0 
0 

0.205 
0.213 
0.221 

0 
0 
0 

200 0 0.201 0 0.218 0 

Ackley  
(0) 

10 0 0 0 0 0 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
NA 

200 0 0 0 0 NA 

Bohachevsky  
(0) 

10 0 0 0 0 0 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0.03 

200 0 0 0 0 NA 

Griewank  
(0) 

10 0 0.123 0 0.227 0 
20 
50 
100 

0 
0 
0 

0.051 
0.014 
0.008 

0 
0 
0 

0.105 
0.032 
0.005 

0 
0 
0 

200 0 0.008 0 0.003 0 

Holzman  
(0) 

10 0 0 0 0 0 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

200 0 0 0 0 0.03 

Hyperellipsoid  
(0) 

20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0.01 

 200 0 0 0 0 0.73 

Maxmod (0) 

10 0 0 0 0 0 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

200 0 0 0 0 0.03 

Multimod (0) 

10 0 0 0 0 0 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

200 0 0 0 0 0.32 

Rastrigin (0) 

10 0 0 0 0 0.16 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

NA 
NA 
NA 

200 0 0 0 0 NA 

Table 5. Simulation results for 𝑝 = 2 (Continued) 
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Function 
Population 
Size 

Mean of 
CGA 

Mean of 
MCCGA 

Std. Dev. of 
CGA 

Std. Dev. of 
MCCGA 

P-value 

 10 1 0 0 0 0 

Rosenbrock (0) 
20 
50 
100 

0.903 
0.839 
0.803 

0 
0 
0 

0.101 
0.091 
0.06 

0 
0 
0 

0 
0 
0 

 200 0.789 0 0.039 0 0 
 10 0 -564.713 0 185.758 0 

Schwefel 
(-837.9658) 

20 
50 
100 

46.004 
75.887 
105.49 

-695.61 
-773.647 
-801.335 

186.434 
186.164 
174.445 

143.328 
95.362 
70.113 

0 
0 
0 

 200 117.696 -814.746 159.06 55.054 0 
 10 0 0 0 0 0 

Sphere (0) 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

 200 0 0 0 0 0.07 
 10 0 0 0 0 0 

Sumsquares (0) 
20 
50 
100 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

 200 0 0 0 0 0.09 

Table 6. Simulation results for 𝑝 = 2 (Continued) 
 
Function Population 

Size 
Number of 
variables 

Mean of 
CGA 

Mean of 
MCCGA 

Std.Dev.of 
CGA 

Std.Dev.of 
MCCGA 

P-value 

 10  1.443 8.052 0 5.682 0 
 50 10 1.255 0.563 0.252 0.754 0 
Levy(0) 200 

10 
 0.943 

2.805 
0.01 
43.545 

0.266 
0 

0.065 
11.761 

0 
0 

 50 25 82.084 9.682 154.712 5.015 0.76 
 200  2.576 0.467 0.271 0.539 0 
 10  0 27.855 0 12.448 0 
 50 10 0.016 10.555 0.231 4.572 0 
Schaffer(0) 200 

10 
 0 

0 
4.134 
138.307 

0 
0 

4.046 
26.803 

0 
0 

 50 25 6.121 45.069 9.544 10.855 0 
 200  0 20.157 0 7.557 0 
 10  0 0 0 0 0 
 50 10 0 0 0 0 0 
Ackley(0) 200 

10 
 0 

0 
0 
0 

0 
0 

0 
0 

0.01 
0 

 50 25 0.167 0 1.51 0 0 
 200  0 0 0 0 0 
 10  0 0 0 0 0 
 50 10 0.045 0 0.718 0 0 
Bohachevsky(0) 200 

10 
 0 

0 
0 
0 

0 
0 

0 
0 

0 
0 

 50 25 7719.617 0 16729.91 0 0 
 200  0.024 0 0.536 0 0 
 10  0 2.889 0 3.789 0 
 50 10 0.001 0.244 0.017 0.367 0 
Griewank(0) 200 

10 
 0 

0 
0.009 
0.444 

0 
0 

0.022 
0.759 

0 
0 

 50 25 80.303 0.521 193.885 0.733 0 
 200  0 0.063 0 0.114 0 

Table 7. Simulation results for 𝑝 = 10 and 𝑝 = 25 
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Function Population 
Size 

Number of 
variables 

Mean of 
CGA 

Mean of 
MCCGA 

Std.Dev.of 
CGA 

Std.Dev.of 
MCCGA 

P-value 

Holzman 
(0) 

10  0 0 0 0 0 
50 10 3.428 0 74.454 0 0 
200 
10 

 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

50 25 199426.7 0 349380.2 0 0 
200  0.32 0 7.467 0 0 

Hyperellipsoid 
(0) 

10  0 0 0 0 0 
50 10 0.193 0 3.358 0 0 
200 
10 

 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

50 25 550.005 0 885.08 0 0 
200  0.028 0 0.885 0 0 

Maxmod 
(0) 

10  0 4.485 0 4.746 0 
50 10 0.01 0.014 0.141 0.133 0 
200 
10 

 0 
0 

0.004 
9.993 

0 
0 

0.089 
0.221 

0 
0 

50 25 4.405 2.61 4.235 4.155 0 
200  0 0.055 0 0.326 0 

Multimod 
(0) 

10  0 0 0 0 0 
50 10 0 0 0 0 NA 
200 
10 

 0 
0 

0 
0 

0 
0 

0 
0 

NA 
NA 

50 25 0 0 0 0 NA 
200  0 0 0 0 NA 

Rastrigin 
(0) 

10  0 0 0 0 0 
50 10 0.069 0 1.101 0 0 
200 
10 

 0 
0 

0 
0 

0 
0 

0 
0 

NA 
0 

50 25 49.673 0 77.604 0 0 
200  0.004 0 0.126 0 0 

Rosenbrock 
(0) 

10  9 0.614 0 1.44 0 
50 10 23.55 0.108 172.108 0.646 0 
200 
10 

 8.865 
24 

0 
0.821 

0.111 
0 

0 
1.613 

0 
0 

50 25 2235399 0.482 3334847 1.301 0 
200  751517.7 0.024 2119229 0.308 0 

Schwefel 
(-189.829,  
-10474.5725) 

10  0 -2380.959 0 446.686 0 
50 10 -5.881 -3330.335 412.897 446.297 0 
200 
10 

 16.142 
0 

-3910.476 
-5428.361 

409.475 
0 

249.125 
695.657 

0 
0 

50 25 -13.716 -7074.333 641.135 1038.013 0 
200  -0.213 -8801.598 650.614 1050.941 0 

Sphere 
(0) 

10  0 0 0 0 0 
50 10 0.226 0 4.481 0 0 
200 
10 

 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

50 25 122.937 0 219.366 0 0 
200  0.008 0 0.179 0 0 

Table 8. Simulation results for 𝑝 = 10 and 𝑝 = 25 (continued) 

Function 
Population 
Size 

Number of 
variables 

Mean of 
CGA 

Mean of 
MCCGA 

Std.Dev.of 
CGA 

Std.Dev.of 
MCCGA P-value 

Sumsquares 
(0) 

10  0 0 0 0 0 
50 10 0.266 0 6.485 0 0 
200 
10 

 
0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

50 25 1814.545 0 3363.846 0 0 
200  0.096 0 3.036 0 0 

SineEnvelope 
(0) 

10  0 2.783 0 0.829 0 
50 10 0 2.272 0 0.838 0 
200 
10 

 
0 
0 

0.783 
8.179 

0 
0 

0.597 
1.248 

0 
0 

50 25 0 6.995 0 1.318 0 
200  0 3.123 0 1.212 0 

Table 9. Simulation results for 𝑝 = 10 and 𝑝 = 25 (continued) 
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5. Conclusion 

Each single bit of an IEEE-754 encoded real value has a different impact depending 
on the location of the bit. As a result of this, some bits tend to be zero or one when a 
variable defined in a narrower range. Process of assigning 0.5s to elements of the 
initial vector of probabilities in CGAs does not consider these biases. In this paper we 
suggest to generate the initial vector of probabilities depending on the location of 
bits encoded by the 32-bits IEEE-754 standard. This special binary coding scheme is 
used elsewhere before and proved to be success in many works. In the second stage 
of the extension, a usual CGA search is applied on the objective function using the 
same encoding scheme. In order to improve the solutions obtained by CGA, Hooke-
Jeeves algorithm is applied using the reported result as the starting point. An other 
local search method can be used instead, however, Hooke-Jeeves algorithm has many 
benefits including applicability in non-differentiable functions. When a good starting 
point is fed, the algorithm performs a fine-tuning operation to obtain a closer solution 
to the global optimum. We perform a simulation study using a set of well-known test 
functions to measure the performance differences. Simulation results show that the 
hybridized and machine-coded CGAs outperform the classical CGAs. 
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